Modelling of Optical Interconnects for Parallel Processing

G.Russell, J.F. Snowdon, T.Lim

(Department of Physics, Heriot-Watt University)

P.M. Dew, I.Gourlay

(Informatics Research Institute, University of Leeds)

Structure of the Presentation

- Why Optics?
- History
- BSP modelling
- Examples
- Conclusions
- Further Work

Why Optics?

Heriot-Watt University Department of Physics

Since electrons carry mass and charge they interact strongly (Coulomb Interaction). Ideally suited for switching. Photons do not carry mass or charge and are non-interacting in free space. They are ideally suited to interconnection.

Why Optics?

- As the length or density of electrical interconnection increases they suffer from increased wire resistance, residual wire capacitance, fringing fields and interwire cross-talk.
- Optical interconnection does not suffer from any of these problems due to its non-interacting nature: however this makes optics inefficient when trying to implement any type of gate.
- Optoelectronics attempts to make the best of both worlds by using electronics for switching and optics for communication.

Bandwidth Limitations

The maximum bandwidth of electronic systems has been estimated by Burton Smith (Tera Corp.) and David Miller (Bell Labs) as:

$$B_{max} = 500. \left(\frac{\dot{A}}{L^2}\right) THz$$

Aspect ratio

Consider chip connections for a 10x10mm chip (100mm²):

- Edge connections: 400 with ~100µm diameter lines A=3mm²
- 2D Solder Bump array: 2,000 with ~15µm diameter pads A=3mm²

Thus for a 10cm electrical connection across a board

 $B_{max} \sim 150 GHz$

SIA Roadmap

I/O figures for high performance ASIC systems taken from Semiconductor Industry Association.

Year	1999	2002	2005	2008	2011	2014
Process size (nm)	180	130	100	70	50	35
Chip size (mm ²)	450	509	622	713	817	937
On-chip clock (GHz)	1.2	1.6	2.0	2.5	3.0	3.6
I/O Bus speed (MHz) [†]	480	885	1035	1285	1540	1800
I/O Pads ^{⁺†}	368	464	584	736	927	1167
Off-chip data rate (Gbs ⁻¹)	177	410	604	946	1428	2100

⁺ Chip to board (off-chip) speed (high performance for peripheral buses.

⁺⁺ Chip to package pads (peripheral).

Origins : Heriot-Watt sorting demonstrator

Batcher's bitonic sort

Origins : Heriot-Watt SPOEC demonstrator

Lens 2

Optical Highways

The concept of optical highways is to provide a general purpose multiprocessor harness with several thousands of channels passed node to node via an OFPGA interface.

Opto-Electronic System Architecture

Heriot-Watt University

Department of Physics

The VCSEL Array Magnified The VCSEL (Vertical Cavity Surface 8x8 VCSEL Emitting Laser) is a laser diode array (CSEM) that emits from the surface of the substrate. Typical speeds are >1GHz. VCSEL array photograph VCSEL 2.8mm VCSEL contact output Ø=10µm Interconnect **Substrate** (GaAs) Spacing: 250µm

MQW Modulators

The MQW array does not produce its own output but modulates an input beam. Passivation

Bepartment of Physics

MQW Photograph

Detector Arrays

Photodetectors act as input devices and are currently available in a wide range off-theshelf.

The faster they are driven the more power they require.

Flip-Chip Bonding

Diffractive Optic Elements (DOES) DOE Output Sample DOE (Single beam input)

WD48 7.0kV x2.00k 9.00vm

These elements are used as array generators and interconnection elements

Modelling OE systems: Why BSP?

- Communication of large messages required to exploit bandwidth?
 - BSP separates communication from computation.
 - Messages between processor pairs are combined.
- Simple cost model: few parameters.

The BSP model

• BSP computer: processors+interconnect.

•Computation and communication occur in distinct phases.

•Computations are a series of *supersteps*.

time

Local	Combining	Communication	Barrier
computation	and re-		synchronisation
	ordering of		
	messages		

The BSP cost model

Cost of a superstep:

Reducing-Sum

$$W = (\log(p) - 1)w_{SPA} + w_{PC}$$

$$G = gh = 2\left(L_{PC} + L_{SPA} + R_{PC} + R_{SPA} + \frac{M_{h}}{B_{PC}} + \frac{M_{h} + M}{B_{SPA}}\right) + \left(\log_{2}(p) - 2\left(L_{SPA} + R_{SPA} + \frac{M_{h} + M}{B_{SPA}}\right)\right)$$

$$C = W + G$$

Cost of Routing

Cost against Number of Processors for Routing

- Large electronic interconnects Pin limited - Grid or HC Topology
- Large Optical interconnects -HC+ or CNN

Reducing-Sum

- Binary-tree algorithm
- Break-even 55 processors
- Most powerful cluster today
 >128 processors

Broadcast

- Break-even 8 processors
- Larger messages allow for added bonus from streaming and high bandwidth

Conclusions

•High connectivity reduced communication costs for small messages

•Optics provide high connectivity

•Low routing costs can speed small data and network control messaging

Further Work

- Other operations / applications
- Design and build demonstrator system
- Topologies for high connectivity
- Generic OFPGA application

