AMOS -Analysis of an Optically Interconnected Beowulf Cluster

G. A. Russell, K. J. Symington, J. F. Snowdon Optically Interconnected Computing Group, Heriot-Watt University, Edinburgh, UK I. Gourlay, P. Dew Informatics Research Institute, University of Leeds, Leeds, UK

Acknowledgements

- Department of Physics, Heriot-Watt University.
 - J.F. Snowdon, A.C. Walker, K.J. Symington,T. Lim, B. Layet, J.J. Casswell, G.A. Russell
- School of Informatics, Leeds University
 P. Dew, I. Gourlay, K. Djemame
- EPSRC (OSI) funded AMOS project
- EPSRC funded PhD project

Key Points

- Modelling
 - Optical, Optoelectronic and Electrical
 - System Architecture and Software Abstraction
- Architectural Enhancements
 - Capacity
 - Distributed Network Intelligence
 - SPA Functionality
 - Shared Abstract Data Types
 - Load Balancing

The Problem

- Processors continue to increase in speed at equal or greater than Moore's Law
- Bandwidth continue to increase in speed at equal or greater than Moore's Law
- Processor Speed Increase >> Bandwidth Increase

What is a Beowulf Cluster?

- Distributed memory multicomputer
- Commodity PC hardware
- Commodity OS (Windows, Linux)
- Message Passing Libraries (MPI)
- Excellent Cost vs.
 Performance

Modelling - System

Modelling Parallel Computers - BSP

Local	Combining	Communication	Barrier
computation	and re-		synchronisation
	ordering of		
	messages		

- Write algorithm in terms of "Supersteps"
- Split communication and computational costs
- Small parameter set
- Measure parameters
- Maps well to Cluster
 architecture

The BSP cost model

Cost of a superstep:

Reducing Sum Algorithm

•All processors start with 1 number. Want total on 1 machine.

•Each pair of machines add there numbers then each pair-of-pairs add and so on.....

- •Log₂(p) super-steps.
- •Efficient on low connectivity.

•Log₂(p)-2 supersteps on SPA layer.

•Few computational or memory resources on SPA

SPA Functionality?

- Reducing-Sum
 - BSP
 - >50 processors
 - 32% performance gain at 128 processors ^{*}/_g
- Model Too Simple
- SADT?
- Load Balancing?

Number of Processors

$$G = gh = 2\left(L_{PC} + L_{SPA} + R_{PC} + R_{SPA} + \frac{M_h}{B_{PC}} + \frac{M_h + M}{B_{SPA}}\right) + \left(\log_2(p) - 2\right)\left(L_{SPA} + R_{SPA} + \frac{M_h + M}{B_{SPA}}\right)$$

Cost against Number of Processors for a Reducing-Sum

Modelling - Optoelectronic

- Number of Channels Limited by Power
- Signal to Noise Ratio of Photodectector
- Optical Power of VCSEL
- Efficiency of Optical Elements
- Semiconductor Density

Experimental -**Optoelectronics**

*Tighter wavelength specifications available on request (T=25°C)

Ordering information

125µm

250um

125um

80 µm

00um

Units

mA

v

mA

v

nm

Ω

pF

GHz

mW/mA

APA1101120000 850nm multi-mode array 1x12

150µm 125µm

-PTM

225mm

250um

250um

3mm

Modelling - Optical

- Number of Channels Limited by Aberration, e.g. Spherical.
- For CCN h_{max} is also function of p_{ab}
- Close approximation to Code V simulation of small number of stages

$$p_{ab} = \frac{\pi \phi^2}{2C_w \left(h_{\max}\left(A_T^2 + \frac{\lambda^2}{16}\right) + s_{VCSEL}^2\right)}$$

Experimental - Optics

Experimental - Optics

Experimental - Optics

- Massively parallel interconnect
- Polarisation controlled
- •Reconfigurable via Liquid Crystals
- •Demonstrator currently under construction

Capacity

- Massive Parallelism
 - 1024 Processor Clusters
 - Huge Routing Cost
- High Connectivity
 - Reduces Routing
 - Increases Pin-out
- G. A. Russell , J. F. Snowdon, T. Lim, I. Gourlay, P. M. Dew, *Modelling Of Optical Interconnects For Parallel Processing*, Conference Proceedings from PREP 2001 at University of Keele, UK, ISBN 1899371281, pp. 29-30, April 2001.

Modelling - System Bus

Memory and IO bus efficiencies

Signalling Overheads

per Second (MBs⁻¹)

Megabytes |

- Protocol Overheads
- Processor Utilisation
 - DMA
 - Cache Stalls
- Transmission Lines

$$N_{op} = N_{max} - N_{max}O_{PS}\left(\frac{B_{per} + B_{act}}{B_{mem}}\right) - N_{ov}$$

$$B = 5 \times 10^{14} \frac{A}{D^2}$$

Experimental - System Bus

(a) RD2 PC Geiger PCI Card

(b) RD2 PC Geiger Bay Panel

Putting It Altogether

Cost against Number of Processors for a Reducing Sum

Cost against Number of Processors for a Reducing-Sum

IVERSITY

Sorting

Parallel sorting by regular sampling:

- This algorithm was chosen due to:
 - Suitability for combining large messages prior to communication.
 - Coarse-grain PC computations, allowing data to be sent from smart-pixel layer to PC layer during local computation.
- Results:
 - For large data sets, algorithm can be implemented, with effective communication bandwidth close to the optical interconnect bandwidth.

Cost for Sorting

- Most communication intensive part
 - Each processor receives O(p) sorted blocks of data, each of size n/p²
 - Blocks must be sent from SPA layer to PC and merged
 - By data streaming $f \approx 1$
 - Send a fraction (1-k) of received blocks to the PC to start merging
 - If merging 2 blocks takes an / p^2 then require

$$4^{\left(\frac{1}{aB_{pc}}\right)} \le (1-k)p \quad \text{and} \quad \frac{(1-k)}{k} << 1$$

Bottom Line: We can exploit the bandwidth for large n

POCA

FPGA

- Reconfigurable
- High Bandwidth required for internal operation.

Optics

- Reconfigurable
- •High Bandwidth
- Geometric Mapping

Applications

- Optical Interconnect
- Optical Neural Network
- NIOT VATT VIVERSITY
- Internet Backbone

HOLMS - The Future

Memory Architecture

- Multiple Optical
 Technologies
 - -Planar Waveguide

-Fibre

- -Free-space
- Custom Memory Controllers
- •Mephisto (ARM) Processor?

- •Planar 'Free-space' optics
- Optical PCB
- •Fibre

Conclusions

- Developed a Parameterised Model of an Optically Interconnected computer System at Algorithm, System and Component Levels.
- Network Capacity and Intelligence can allow Optical Bandwidth to be used in a Beowulf system.
-BUT Beowulf was the Wrong Architecture.
- Models will Hold for the RIGHT Architecture.

OIC Website

http://www.optical-computing.co.uk

AMOS HOLMS POCA NOSC OFPGA

