
Dept. Physics
Heriot-Watt University

Optoelectronic Neural Network
Demonstrator:

Program and Results

Yves Randle
July 2002

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 2

Contents:

Introduction (page 4)

I) DSP program (nnetwork.asm) (page 5)

1) Assembly language (page 5)
a) Use of the accumulator (page 5)
b) Initialise a matrix (page 5)
c) Compare two values (page 6)
d) Remarks (page 6)

2) DSP initialisation (page 6)
3) Switch off the VCSELs (page 6)
4) Calibration (page 6)
5) Synchronisation (page 8)

a) Optical synchronisation (page 8)
b) Hardware synchronisation (page 9)

6) Neural network calculation (page 10)
7) Organisation of the DSP memory (page 11)

a) Sigmoid function values (page 11)
b) Direct memory addresses (page 12)

II) The optoelectronic neural network demonstrator program
(NNetDem) (page 13)

1) The optoelectronic neural network demonstrator control module
(NNetCtrl) (page 13)

a) Software interface (page 13)
* Variables (page 13)
* Functions (page 13)

b) User interface (page 15)
* Neural network parameters (page 15)
* Neural network controls (page 15)
* VCSELs form (page 16)

2) The optoelectronic neural network demonstrator main program
(NNetDem) (page 16)

a) Variables and functions (page 16)
b) User interface (page 18)

* Main controls (page 18)
* Run the optoelectronic neural network (page 19)
* Test the optoelectronic neural network (page 21)

3) The custom request window (NNetCustReq) (page 22)
a) Variables and functions (page 22)
b) User interface (page 23)

* Main controls (page 23)
* Run the optoelectronic neural network (page 24)

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 3

* Select the matrix to be displayed (page 25)
* Neuron evolution (page 25)

III) Results and discussion (page 26)

1) Optical system (page 26)
a) Description (page 26)
b) Zeroth order (page 26)
c) Signal and noise levels (page 26)
d) Problems (page 27)

* Weak optical signals (page 27)
* Cross talk (page 27)
* Broken VCSELs (page 28)

2) Crossbar switch results (page 28)
3) Banyan switch results (page 30)
4) Discussion: the neural network parameters (page 31)
5) Neuron evolution during optimisation (page 32)
6) Remarkable results (page 33)

a) Input averaging (page 33)
b) Lights on (page 33)
c) Unexpected inputs in the first channel of each ADC (page 33)
d) Broken VCSELs (page 33)

Conclusion (page 34)

Appendix 1: The DSP program (nnetwork.asm) (page 35)

Appendix 2: The optoelectronic neural network demonstrator
program (NNetDem) windows (page 46)

Appendix 3: Crossbar switch results (page 49)

Appendix 4: Banyan switch results (page 52)

Appendix 5: Neuron evolution during optimisation (page 55)

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 4

Introduction:

The present document is a report of my work on the optoelectronic neural network
demonstrator, which I did during a six-month project in the Optoelectronic Neural
Network team at the Physics Department of Heriot-Watt University. My project lasted
from February 2002 to July 2002.

When I arrived, the demonstrator was already built but had never been run for neural
network computation and scheduling. It is important for the understanding of this
report to read the following:

��“Optically Interconnected Computing systems”: thesis written by Keith
Symington in November 2001. Keith, who constructed the demonstrator,
explains its functioning as well as more general material about optical
solutions for interconnections and neural networks for switching.

��“NOSC Electronic components”: describes the electronic components used in
the demonstrator.

��“VCSEL Array and Digital Driver”: describes the theory and design behind a
digital VCSEL (vertical cavity surface emitting laser) driver unit including the
profile of an associated VCSEL array.

��“DSP Analogue to Digital Prototype Board – V2.00”: describes the electronic
boards that interface with the four DSP (digital signal processor) starter kits
and carry out the analogue to digital conversion.

��“DSKController V2.00 Module”: describes the C++ module used to control
the DSPs using the computer.

��“TMS320C5x User’s Guide”: User’s guide of the DSPs, with the assembly
language tools.

��“TMS320C5x DSP Starter Kit User’s Guide”: User’s guide of the DSP starter
kits used in the demonstrator.

My work was divided into three main parts:

��Write a program in assembly language to run the DSPs in the demonstrator.
��Write a program in Borland C++ to run the demonstrator from the computer.
��Run the demonstrator and evaluate its performance for scheduling.

All the files relative to the programs needed to run the demonstrator can be found in
the directory: C:\Yves\NNetDem V1.00

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 5

I) DSP program (nnetwork.asm):

This part first explains parts of the code in the DSP assembly language, and then
describes the different parts of the program needed to run the DSPs, called
“nnetwork.asm”. The code is enclosed in appendix 1.

1) Assembly language:

These are a few useful things to know about the TMS320C5x DSP starter kit to
understand the DSP program:

a) Use of the accumulator:

The memory of the DSPs is composed of words. Each word is composed of 2 bytes
(16 bits). The accumulator is longer: it has the size of two words (32 bits). Both the
higher part (most significant half) and the lower part (least significant half) of the
accumulator can be stored independently in memory spaces. A word can also be left-
shifted when loaded into the accumulator. This allows to do two things:

��Divide by 2n, with n an integer smaller than 16. For example to divide a value
by 16, the value is first loaded from the memory into the accumulator and in
the same time shifted 12 bits to the left. This means that the value is multiplied
by 212 = 4096. The most significant half of the accumulator is then stored back
into memory. Not considering the lower part of the accumulator is equivalent
to dividing by 216 = 65536. So the final value has been divided by 65536 /
4096 = 16.
For example:

LAC *, 12, AR0 ; Load accumulator with the word shifted.
SACH *, 0, AR0 ; Store the higher part of the accumulator.

��Separate two bytes contained in a single word. The word is first loaded

from the memory into the accumulator and in the same time shifted 8 bits to
the left. Each byte is then in a different half of the accumulator and they can be
stored independently in two different memory spaces. One of them then has to
be shifted 8 bits to the right, which is equivalent to dividing by 256 as
explained before.
For example:

LAC *, 8, AR0 ; Load accumulator with the word shifted.
SACH *+, 0, AR0 ; Store the higher part of the accumulator.
SACL *, 0, AR0 ; Store the lower part of the accumulator.
LAC *, 8, AR0 ; Load and shift the second byte.
SACH *-, 0, AR0 ; Store the second byte again.

b) Initialise a matrix:

An n�m matrix of values is represented n*m values, one after the other. To initialise
such a matrix, the value n*m is loaded into the accumulator. An auxiliary register

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 6

(ARx) is loaded with the address of the first value of the matrix. The current matrix
value (as indicated by the auxiliary register) is initialised and in the same time the
auxiliary register is incremented. The value in the accumulator is decremented. If the
value in the accumulator is greater than 0, the program branches the initialisation of
the current matrix value again, and so on.
For example:

 LAR AR0, #matrix ; Load AR0 with matrix location.
 LAC #00010h ; Load accumulator with value 16.
init: SPLK #0, *+, AR0 ; Store 0 in current matrix value and

increment AR0.
 SUB #1 ; Subtract 1 from accumulator.
 BGZ init ; Branch label “init” if accumulator

is greater than 0.

c) Compare two values.

Subtract one value from the other and then compare the result to zero using a
conditional branch.
For example:

LAC value1 ; Load accumulator with first value.
SUB value2 ; Subtract second value.
BLZ next ; Branch label “next” if the result is lower

than 0, otherwise the next instruction is
executed.

d) Remarks:

��It is preferable not to use the instruction “SAMM” to address a memory-

mapped register like ARx. It involves problems because of the time needed by
the DSP to address the memory-mapped registers.

��All the input instructions “IN” had to be written before the address 0x0b00 in
the program memory in order to work as expected.

2) DSP initialisation:

The code for DSK board initialisation has to be written at the beginning of each part
of the program.

3) Switch off the VCSELs:

This is the first part of the program. When run, it sends a word whose value is 0 to the
output port. This switches the VCSELs off.

4) Calibration:

The calibration is an averaged measure of the background noise for each one of the 64
detectors, and an averaged measure of the zeroth order for each detector when the
corresponding VCSEL is on. The calibration part of the program will be carried out

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 7

for each one of the 4 DSPs, one at a time. The calibration does 8 times the same thing:
one time for each of the 8 channels of the ADCs. When one ADC channel is called,
two ADCs are called simultaneously and the measures from two detectors are stored
within a single word in the DSP memory.

For each value, 256 measures are done to give an accurate average. For each channel
of the ADCs, the averaging is done 3 times: the first time with no VCSEL on to give
the background noise value for the two detectors, the second time with the VCSEL
corresponding to the first detector on and the third time with the VCSEL
corresponding to the second detector on.

To know which VCSEL should be switched on when, we use the “selection words”
that give a relation between the position of the VCSELs in the VCSEL array and the
mapping of the artificial neurons in the DSP memory.

Here is a representation of the VCSEL array; a number is given to each VCSEL:

 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 17 18 19 20 21 22 23 24
4 25 26 27 28 29 30 31 32
5 33 34 35 36 37 38 39 40
6 41 42 43 44 45 46 47 48
7 49 50 51 52 53 54 55 56
8 57 58 59 60 61 62 63 64

The same representation can be used for the corresponding neural network or detector
array. Indeed, each neuron has a corresponding VCSEL and a corresponding detector.

Each DSP controls two rows in the VCSEL array. For example the first DSP controls
the following VCSELs:

 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16

Each DSP controls 16 VCSELs thanks to an output word. Each bit in the output word
controls a VCSEL. The most significant bit controls the 16th VCSEL and the least
significant bit controls the 1st VCSEL. For example the hexadecimal output word
0x1248 will send the following command to the VCSELs:

 1 2 3 4 5 6 7 8
1 0 0 0 1 0 0 1 0
2 0 1 0 0 1 0 0 0

A VCSEL that receives a “1” is switched on; a VCSEL that receives a “0” is switched
off. The selection words represent the 16 possible outputs with only one VCSEL on.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 8

Besides, the values from the detectors are always read in the same order for each DSP.
This order gives the mapping of the artificial neurons in the DSP memory. This order
is as follows:

 1 2 3 4 5 6 7 8
1 2 4 6 8 10 12 14 16
2 1 3 5 7 9 11 13 15

This gives the order in which the selection words are defined. Here is the actual
initialisation of the selection words:

sel: .word 00100h, 00001h, 00200h, 00002h
 .word 00400h, 00004h, 00800h, 00008h
 .word 01000h, 00010h, 02000h, 00020h
 .word 04000h, 00040h, 08000h, 00080h

5) Synchronisation:

The synchronisation takes place at the beginning of the neural network optimisation.
It consists in synchronising the four DSPs, which are run one after the other, so that
the output for each iteration takes place at the same moment to allow correct
interconnection between the neurons. It can be done either using the optical system as
an interconnection between neurons handled by different DSPs or using a hardware
link between the DSPs. Both synchronisations are done so that the same code can be
loaded into the four DSPs. A word called “syntyp” is reserved in the DSP memory: it
is either equal to 0, which indicates that the program will carry out a hardware
synchronisation, or 1, for an optical synchronisation.

a) Optical synchronisation:

Each DSP switches one VCSEL on and measures the optical signal received not on
the corresponding detector, but on the detector just beneath it. Indeed there is an
interconnection between aligned neurons in both cases of crossbar and Banyan DOEs.
The VCSELs that are switched on are number 4, 20, 36 and 52. The detectors used for
the synchronisation are number 12, 28, 44 and 60.

Because of the noise level, the input has to be averaged over 256 values in a rotating
memory. As soon as the averaged input for each DSP reaches a predefined threshold
(called “synth”), it means that all four VCSELs are on and that the program can
continue and start the neural network optimisation.

The problem with the optical synchronisation is that because of the necessary input
averaging, a delay is induced between the DSPs. The maximum value for this delay in
order to allow efficient synchronisation (called “delay” in the DSP memory) has to be
defined before starting the program. The outputs are synchronised in each iteration
only if the program waits for a time equivalent to the maximum delay before and after
changing the output.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 9

When using the optical synchronisation, the time needed for each iteration is about
2.62 ms. This is much longer than what is actually needed for the neural network
calculation, so it doesn’t allow fast decision-making. But on the other hand it was
very interesting to prove that the optical system could provide all the interconnection
needed between the neurons and the DSPs to do the full neural network optimisation.

b) Hardware synchronisation:

For the hardware synchronisation, the DSPs are linked electrically: one DSP (the last
to be run, DSP4) sends a hardware interruption to the other three DSPs and to itself.
For each DSP, as soon as the hardware interruption is received, the neural network
calculation is branched and the neural network optimisation begins.

The interruptions occur on the pin INT1\ of each DSP. The interruption takes place
when a “0” is received on INT1\. The address line A7 of DSP4 combined with IS\ of
DSP4 will be used to send the interruption signal, which has to be low when A7=1
and IS\=0 (meaning that an I/O port is used). To send the interruption signal, write a
value equal to zero to I/O space address 0x0080. The following figure shows the
required circuitry using NOR gates and the table shows the associated logic.

IS\ DSP4 A7 DSP4 A7\ DSP4 P INT1\
0 0 1 0 1
0 1 0 1 0
1 0 1 0 1
1 1 0 0 1

The component used to create the interruption signal is of the following type: National
MM74HC02 Quad 2-Input NOR Gates. This component has four NOR gates. Here
are the colours of the wires that connect that component to the DSPs:

��Black for the four wires connected to the four INT1\ pins.
��Red for the wire connected to the A7 pin of DSP4.
��Blue for the wire connected to the IS\ pin of DSP4.

The interruption can only happen if bit 9 of ST0 is cleared and if bit 0 of IMR is set.
Bit 9 of ST0 is called INTM or interruption mask, IMR is the interruption mask
register and bit 0 of IMR corresponds to a mask for interruptions on INT1\.

An interruption on INT1\ then branches a fixed memory address in the DSK: 0x0802,
called the interruption vector location for INT1\. So this memory location and the
following have to be initialised with the code that indicates that the following part of
the program should be branched. For example, if the program should branch the

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 10

program memory address 0x2020, the memory addresses 0x0802 and 0x0803 should
be initialised with the values 0x7980 and 0x2020:

Memory address: 0x0802 0x0803
Mnemonic: B 02020h
Corresponding code: 0x7980 0x2020

In the case of hardware synchronisation, the value of “delay” can be equal to 0 and the
time needed for one iteration is 0.11 ms. This time is a lot shorter than that using the
optical synchronisation: in this case the iteration is about 24 times faster.

6) Neural network calculation:

Each one of the 64 neurons corresponds to a connection between an input and an
output of a switch. Any connection may be requested, and this translates to request
values being given to the neurons. The neurons are connected through the optical
system. Each neuron’s input is the optical signal received on its detector and its output
is the optical signal sent by its VCSEL, which is either on or off.

During a neural calculation, the neuron first multiplies the input by –A: A is the
weight and the minus sign shows that the input inhibits the neuron. It then adds a bias
called B. This gives the value x:

x = -A*input + B
The neuron has a memory value called “mem” that is updated at each iteration and is
equal to:

mem = previous value of mem + x

It then determines its response based on the activation function f(mem). Here the
activation function is a sigmoid function:

meme
memf *1

1)(
��

�

�

The neuron then multiplies f(mem) by the request, which can take any value between
0 and 256 with a precision equal to 2-8. The output is 1 if the result is greater or equal
to a threshold value (called “th”, usually 0.5), and 0 otherwise:

output = 1 if request*f(mem) � threshold
output = 0 if request*f(mem) < threshold

The output is just one bit per neuron and each DSP handles 16 neurons. So the output
is a word (16 bits) for each DSP.

The memory word for each neuron has a large range of integer values: from –32768 to
32767. The sigmoid function takes on 514 values, depending on the neuron memory
value mem:

��f(mem) = 0 if mem < -1024

��f(mem) = meme *1
1
��

�

 if –1024 � mem < 1024

��f(mem) = 1 if mem � 1024

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 11

A, B and � are called the neural network parameters. The neural calculation takes
place a predefined number of times. This number is called “iter”; it represents the
number of iterations that have to be carried out for the optimisation to get to a valid
result. The result is composed of the final output words of the 4 DSPs.

Number of requests:
The number of requests that are downloaded to the DSPs is stored in the DSP memory
word called “number”. The following memory word contains the number of results
that have currently been obtained. This allows checking whether the program has had
time to solve all the requests.

Initialisation:
At the beginning of the program and between the optimisations of two different
requests, the neuron memory matrix and the output word are initialised; all the bits are
given the value 0 (label “next” in the DSP program”). The number of the current
iteration is also initialised. Obviously these initialisations do not take place between
two iterations of the same optimisation.
However it can be interesting not to do the initialisation at the beginning of the
program in the case of a single request when the neural network should continue the
previous optimisation. It is the purpose of the variable called “oneit”. If “oneit” equals
1, the neuron memory matrix and the output word are not initialised. If it equals 0, the
initialisation takes place normally. This allows the computer to run the iterations of an
optimisation one by one, so it can record the evolution of the neurons’ memory
values.

7) Organisation of the DSP memory:

The user’s space in the DSK memory starts at the address 0980h and finishes at the
address 2BFFh. The program “nnetwork.asm” is divided into three main parts:

��The program that starts at the address 0A00h and for which a length of 0300h
is reserved.

��The uninitialised data from address 0D00h to 20FFh (length 1400h). It is
divided into four parts:

o “sigm” from 0D00h to 0EFFh (length 0200h): the values of the
sigmoid function.

o “aver” from 0F00h to 0FFFh (length 0100h): the rotating memory that
is used for averaging the input in the optical synchronisation.

o “req” from 1000h to 1FFFh (length 1000h): the request matrices: up to
256 request matrices with 16 values.

o “res” from 2000h to 20FFh (length 0100h): the result words: up to 256
results.

��The initialised data that starts at the address 2100h and for which a length of
0100h is reserved. It contains the list of constants and variables needed for the
calibration, synchronisation and neural network calculation.

a) Sigmoid function values:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 12

The sigmoid function values consist in a look-up table containing 512 values. The
active range of neuron memory values, from –1024 to 1024, contains 2048 values. To
find the corresponding sigmoid function value, the neuron memory value is first
divided by 4, then the result found serves as an address to find the sigmoid function
value. For example, if the memory value is equal to 0xfd0b (-757):

��The memory value is divided by 4: the result is 0xff43 (-189, only keep the
integer part).

��0x0e00 is added to the result to find the address: 0xff43 + 0x0e00 = 0x0d43.
��The corresponding sigmoid function is located at the address 0x0d43.

Of course the sigmoid function values, which depend on �, have to be initialised
before the program is run.

b) Direct memory addresses:

The DSP program sometimes calls direct memory addresses that contain constants or
variables in the initialised data. This only calls addresses starting with 21xxh if the
data memory page pointer (DP) bits are correctly initialised. Indeed, these bits contain
the first 9 bits of any direct memory address. For an address starting with 21xxh, the
first 9 bits are: 0010 0001 0, which makes the binary value 1000010, which is equal to
66. The DP bits are thus initialised using the following instruction:

 LDP #66

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 13

II) The optoelectronic neural network demonstrator program
(NNetDem):

The windows that correspond to the program described here are shown in appendix 2.

1) The optoelectronic neural network demonstrator control module
(NNetCtrl):

This module allows to start up and run the DSPs of the demonstrator. The neural
network parameters are defined in it.
The module is composed of the following eleven files:
NNetCtrl.cpp, NNetCtrl.h, NNetCtrl.dfm, NNetVCSELs.cpp, NNetVCSELs.h,
NNetVCSELs.dfm, DSKCtrl.cpp, DSKCtrl.h, DSKCtrl.dfm, Ports.cpp and Ports.h.

a) Software interface:

* Variables:

A, B, beta (�), it (number of iterations), th (threshold), synth (synchronisation
threshold), syndelay (synchronisation delay):
double NNetCtrlForm->A
double NNetCtrlForm->B
double NNetCtrlForm->beta
unsigned int NNetCtrlForm->it
double NNetCtrlForm->th
unsigned int NNetCtrlForm->synth
unsigned int NNetCtrlForm->syndelay

These variables are the neural network parameters and the parameters needed to run
the neural network optimisation. They are described before, in the part “DSP
program”.

vcsel[8][8], vcselssix, vcselseight:
bool NNetCtrlForm->vcsel[8][8]
int NNetCtrlForm->vcselssix
int NNetCtrlForm->vcselseight

These are altered when using the “Broken VCSELs” button and the “VCSELs” form.
The matrix of booleans vcsel[8][8] represents each one of the 64 VCSELs. It is
true if the corresponding VCSEL works, false if it doesn’t. The number of VCSELs
that work is called vcselseight. The number of VCSELs that work among the
central 6�6 array is called vcselssix.

active:
bool NNetCtrlForm->active

This Boolean describes the state of the “NNetCtrlForm” window. If active is true,
the parameters shown in the window can be changed. If it is false, the parameters
can only be read.

* Functions:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 14

StartUpNetwork:
bool NNetCtrlForm->StartUpNetwork(bool speed)

This procedure starts up the demonstrator. It first initialises the four DSKs. It then
loads the file “nnetwork.out” into the DSPs. The procedure then runs the part of the
DSP program that switches the VCSELs off and it runs the calibration. It finally
transmits A, B, it, th, synth, syndelay and the sigmoid function values based on
beta to the four DSPs. The procedure returns true if no errors occur in the DSK
Controller Module or false otherwise.
speed: Should a DSK calibration be performed or not. Can be true or false.

RunNetwork:
bool NNetCtrlForm->RunNetwork(double ***request, int reqnumber,
unsigned int ***result, int *resnumber, int synchronisation)

This procedure runs the optimisation of a certain number of requests. It first transmits
the request matrices to the DSPs, then runs the DSPs and receives the result matrices.
The procedure returns true if no errors occur in the DSK Controller Module or false
otherwise.
***request: The request matrices.
reqnumber: The number of requests to be solved.
***result: The result matrices.
*resnumber: The number of results the program has had time to optimise.
synchronisation: The type of synchronisation used. Can be OPTICS or HARDWARE.

RunSingleRequestNetwork:
bool NNetCtrlForm->RunSingleRequestNetwork(double **request, unsigned
int **out, int **in, int **mem, int *resnumber, int synchronisation)

This procedure runs a certain number of iterations of the current optimisation, without
resetting the values of the output matrix or the neurons’ memory matrix. This can be
done only if there is only one request to be solved. The procedure transmits
singleit=1 to indicate that a single request process is required. It then transmits the
request matrices to the DSPs, runs them and receives the output word (converted into
the output matrix), the input matrix and the neurons’ memory matrix. The procedure
returns true if no errors occur in the DSK Controller Module or false otherwise.
**request: The request matrix.
**out: The output matrix.
**in: The input matrix.
**mem: The neurons’ memory matrix.
*resnumber: The number of results the program had time to optimise. Can be 0 or 1.
synchronisation: The type of synchronisation used. Can be OPTICS or HARDWARE.

The next four procedures are very similar. They respectively transmit new values for
A, B, it and the sigmoid function values based on beta to the four DSPs. They return
true if no errors occur in the DSK Controller Module or false otherwise.

ChangeANetwork:
bool NNetCtrlForm->ChangeANetwork()

ChangeBNetwork:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 15

bool NNetCtrlForm->ChangeBNetwork()

ChangeBetaNetwork:
bool NNetCtrlForm->ChangeBetaNetwork()

ChangeItNetwork:
bool NNetCtrlForm->ChangeItNetwork()

ResetIteration:
bool NNetCtrlForm->ResetIteration(unsigned int **out, int **mem)

This procedure transmits an output matrix (converted into an output word) and a
neurons’ memory matrix to the DSPs. This is used during single requests to reset an
iteration when an error occurred in the previous iterations, which lead to invalid
values in the neuron’s memory matrix and in the output word. Indeed the neurons’
memory matrix and the output word are the only evolving variables that are kept from
one iteration to the next. The procedure returns true if no errors occur in the DSK
Controller Module or false otherwise.
**out: The output matrix.
**mem: The neurons’ memory matrix.

GetNoise:
bool NNetCtrlForm->GetNoise(unsigned int **noise, unsigned int
**oorder)

This procedure receives the values of the noise matrix and the zeroth order matrix
from the DSPs. The procedure returns true if no errors occur in the DSK Controller
Module or false otherwise.
**noise: The noise matrix.
**oorder: The zeroth order matrix.

b) User interface:

See figure 1 of appendix 2.

* Neural network parameters:

The group box called “Neural network parameters” allows changing the values of A,
B, beta, it, th, synth and syndelay, if active is true.

* Neural network controls:

DSK Control:
When this button is clicked, the “DSKCtrl” form is displayed modally.

Broken VCSELs:
When this button is clicked, the “VCSELs” form is displayed modally (see the next
paragraph, “VCSELs form”).

Switch VCSELs Off:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 16

When this button is clicked, the VCSELs are switched off. The computer first
initialises the four DSKs, and then loads the file “nnetwork.out” into the DSPs. It then
runs the part of the DSP program that switches the VCSELs off. If the “High speed”
check box is checked, a DSK calibration is performed or a pre-calibrated value is
used.

* VCSELs form:

See figure 2 of appendix 2. The neurons that correspond to VCSELs that do not work
can be deselected using the “VCSELs” form. This alters the values of vcsel[8][8],
vicselssix and vcselseight.

2) The optoelectronic neural network demonstrator main program
(NNetDem):

This program allows the user to:

��Run a predefined number of full optimisations on the demonstrator, using
randomly generated request matrices.

��Read the result matrices obtained and have some information about the results
in term of validity, optimality…

��Run a number of tests on the different parameters of the demonstrator and get
tables that can be used to plot the evolution of the validity, optimality…

All the request matrices generated in the main program only use the request values 0
and 1, which means that the neurons are either requested or not.

a) Variables and functions:

size, type, synchronisation:
int Main->type
int Main->size
int Main->synchronisation

These variables specify the type of interconnection, the size of the neuron array, and
the type of synchronisation.
type can be either CROSSBAR or BANYAN.
size can be either 8 (for the 8�8 neuron array) or 6 (for the 6�6 central neuron array).
If type is BANYAN, then size can only be 8.
synchronisation can be either OPTICS or HARDWARE.

load:
int Main->load

This variable specifies the load: the number of neurons that will be requested in the
request matrices. It can take any integer value between 0 and the number of VCSELs
that work (either NNetCtrlForm->vicselseight or NNetCtrlForm->vicselssix).

requestnumber, resultnumber:
int Main->requestnumber
int Main->resultnumber

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 17

These variables respectively specify the number of request matrices that will be sent
to the neural network and the number of result matrices that have been received from
the neural network. They can take any integer value between 0 and 256.

***request, ***result:
double Main->***request;
unsigned int Main->***result;

These two matrices are three-dimensional and represent respectively the request
matrices and the result matrices. The first index (k in request[k][i][j] or
result[k][i][j] respectively) indicates the index of the matrix and varies from
0 to requestnumber-1 or resultnumber-1 respectively.
request[k] is an 8�8 matrix of request values, which are real numbers.
result[k] is an 8�8 result matrix, with values equal to 0 or 1.

opt:
int Main->opt

This variable represents the optimum number of neurons that can be on, depending on
the neuron array size and the load. If load is greater than size, then opt equals size.
If load is lower than size, then opt equals load.

validnumber, optimumnumber, suboptimumnumber, shouldbeonnumber,
neuronson, missingneurons:
int Main->validnumber
double Main->neuronson
int Main->optimumnumber
int Main->suboptimumnumber
int Main->shouldbeonnumber
double Main->missingneurons

These variables are used to evaluate the results that are given by the demonstrator.
validnumber is the number of results that are valid.
neuronson is the average number of neurons on over all the results received, the
number of which is resultnumber.
optimumnumber is the number of results that have optimum results: a number of
neurons on equal to opt. This variable is only used for the crossbar interconnection.
suboptimumnumber is the number of results that have results with a number of
neurons on equal to opt-1. This variable is only used for the crossbar interconnection.
shouldbeonnumber is the number of results that have opt –1 neurons on when they
could have opt neurons on: one neuron did not turn on when it should have. This
variable is only used for the crossbar interconnection.
missingneurons is the average number of neurons that did not turn on when they
could have. This variable is only used for the banyan interconnection.

reqindex:
int Main->reqindex

This variable indicates the index of the request or result matrix that is currently
displayed in the “Run the optoelectronic neural network” group box.

RandRequestFill:
void __fastcall Main->RandRequestFill()

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 18

This function randomly loads the request matrices: the request matrices are filled with
values equal to 0 and 1, the number of values equal to 1 corresponds to the value of
load. The neurons with a request value equal to 1 are the ones that are requested. If
size equals 6, then no neuron is requested in the two outer rows and the two outer
columns.

EvaluateTime:
bool __fastcall Main->EvaluateTime(int time)

Based on time, which corresponds to a number of seconds, this function evaluates the
time in hours and minutes needed to run a test. It then displays a dialogue box hat
indicates to the user the time needed. The user can then choose to run the test or not.

CheckValidBanyan:
bool __fastcall Main->CheckValidBanyan(int i, int j, int reqindex)

This function checks the validity of one value of a result matrix in the case of the
banyan interconnection.
i, j: the two indices of the value to be checked within the result matrix.
reqindex: the index of the result matrix that is being checked for validity.

InterpretResult:
void __fastcall Main->InterpretResult()

This function interprets the result matrices that have been received from the
demonstrator. The following steps are obviously done differently for the crossbar
interconnection and the banyan interconnection.
The function first checks whether the results are valid or not and the number of valid
results is stored in validnumber. It evaluates the average number of neurons on and
stores the value in neuronson.
For a crossbar interconnection, it updates the values of optimumnumber,
suboptimumnumber and shouldbeonnumber.
For a banyan interconnection, it updates the value of missingneurons.

InterpretOneResult:
void __fastcall Main->InterpretOneResult()

This function interprets the result matrix with the index equal to reqindex. It
indicates whether the matrix is valid or not. If it is valid, it indicates the number of
neurons on and the number of neurons that did not turn on when they could have. For
the crossbar interconnection, the number of missing neurons can only be 1 and only
when the number of neurons on is equal to opt-1.

b) User interface:

See figure 3 of appendix 2.

* Main controls:

DOE type, Array size, Synchronisation:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 19

The type of interconnection (crossbar or banyan), the size of the neuron array (6�6 or
8�8, only for the crossbar interconnection), and the type of synchronisation (optical or
hardware) can be chosen using these three radio boxes.

Load:
This specifies the load; it alters the value of load. The default value is 50 %: 32
neurons out of 64 for the 8�8 neuron array, 18 out of 36 for the 6�6 neuron array.
If the load is equal to 2, a check box with the caption “Same row or column” appears.
The user can then choose to have the two requested neurons in the same row or the
same column in all the request matrices.

Number of requests:
This is the number of request matrices that will be sent to the demonstrator. The
default value is 100 and the maximum value is 256.

Reset:
When this button is clicked, all the variables that are used to evaluate the results are
erased. The results displayed in the group box called “Run the optoelectronic neural
network” are also erased. Any open disk file is closed. The buttons used to run and
test the demonstrator are enabled.

Neural Network Control:
When this button is clicked, the “NNetCtrl” form is displayed modally (see the
paragraph called “The optoelectronic neural network demonstrator control module”).

Custom Request:
When this button is clicked, the “CustReq” form is displayed modally (see the
paragraph called “The custom request window”).

* Run the optoelectronic neural network:

Run Random:
When this button is clicked:

��First the time needed to run the system is evaluated and the function
EvaluateTime is called.

��Then the function NNetCtrlForm->StartUpNetwork is called to start up the
demonstrator.

��Depending on the value of reqnumber, memory is allocated to the matrices
***request and ***result.

��The function RandRequestFill is called to randomly create the request
matrices, depending on load.

��The function NNetCtrlForm->RunNetwork is called to run the demonstrator
with the request matrices randomly created and write the results in
result[k][i][j].

��The results received are interpreted using the function InterpretResult.
��The interpretation is displayed in the memo with the label “Results”.

If an error occurs while controlling the DSPs, an error dialogue box appears, the
function is stopped and the “Reset” button is enabled.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 20

Run Triangle:
Clicking this button almost does the same thing as clicking “Run Random”. The only
difference is that all the request matrices are the same: the neurons requested are those
that are in the lower part of the array, under the diagonal. This is a representation of
this matrix:

 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0
4 1 1 1 1 0 0 0 0
5 1 1 1 1 1 0 0 0
6 1 1 1 1 1 1 0 0
7 1 1 1 1 1 1 1 0
8 1 1 1 1 1 1 1 1

The triangular request matrix is very useful to test the system because it only has one
optimum solution that is well known: a result matrix with all the neurons in the
diagonal on.

Results:
In this memo is displayed the interpretation of the results that have been received
when using “Run Triangle” or “Run Random”.
For the crossbar interconnection, it indicates:

��The number of results received (resultnumber).
��The number of valid results (validnumber).
��The number of optimum results (optimumnumber).
��The number of results with opt-1 neurons on (suboptimumnumber).
��The number of results with either opt neurons on or opt-1 neurons on

(optimumnumber+suboptimumnumber).
��The number of results with opt-1 neurons on that could have opt neurons on

(shouldbeonnumber).
��The average number of neurons on (neuronson).

For the banyan interconnection, it indicates:
��The number of results received (resultnumber).
��The number of valid results (validnumber).
��The average number of neurons on (neuronson).
��The average number of neurons that could be on and are not

(missingneurons).

Request or result number:
This specifies the index of the request matrix or result matrix that will be displayed. It
alters the value of reqindex.

See request:
When this button is clicked, the request matrix with the index equal to reqindex is
displayed. The corresponding result is interpreted by the function

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 21

InterpretOneResult, and the evaluation of the result is displayed in the memo with
the label “result”.

See result:
When this button is clicked, the result matrix with the index equal to reqindex is
displayed. The result matrix is interpreted by the function InterpretOneResult, and
the evaluation of the result is displayed in the memo with the label “result”.

Result:
The interpretation of the result that is currently displayed or which corresponds to the
request that is currently displayed (given by InterpretOneResult) is indicated int
this memo.

* Test the optoelectronic neural network:

A Test, B Test, Beta Test, It Test, Load Test, Stability Test:
Clicking these buttons almost does the same thing. The difference is the parameter on
which the test is carried out. For example when the “A test” button is clicked:

��First the “Test starting point”, the “Test finishing point” and the “Test step”
are read in the three edit boxes.

��Then the time needed for the test is evaluated and the function EvaluateTime
is called.

��It opens a file to write the results. The name of the file is specified in the edit
box with the label “Write results in file”.

��Then the function NNetCtrlForm->StartUpNetwork is called to start up the
demonstrator.

��Depending on the value of reqnumber, memory is allocated to the matrices
***request and ***result.

��The loop begins at this point. The new value of A is sent to the DSPs using the
function NNetCtrlForm->ChangeANetwork.

��The function RandRequestFill is called to randomly create the request
matrices, depending on load.

��The function NNetCtrlForm->RunNetwork is called to run the demonstrator
with the request matrices randomly created and write the results in
result[k][i][j].

��The results received are interpreted using the function InterpretResult.
��The interpretation is written in the file.
��If the test finishing point has not been reached, the loop continues with the

next value of A.
��The file is finally closed.

If an error occurs while controlling the DSPs, an error dialogue box appears, the
function is stopped and the “Reset” button is enabled.

A and B Test:
Clicking this button does almost the same thing as clicking the other test buttons. The
only difference is that both A and B vary in this test, according to the values in the six
edit boxes: “A starting point”, “A finishing point”, “A step”, “B starting point”, “B
finishing point”, “B step”.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 22

Write results in file:
This specifies the name of the file in which the interpretation of the test results is
written. The file first indicates the type of interconnection. If the type is crossbar, it
indicates the size of the neuron array.
For the crossbar interconnection, the file gives the following information every time
the demonstrator is run (for each one of the test values):

��The values of NNetCtrlForm->A, NNetCtrlForm->B, NNetCtrlForm->beta,
NNetCtrlForm->it, requestnumber, load, resultnumber.

��The values of resultnumber (called “result”), validnumber (called “valid”),
optimumnumber (called “8 ON” for example if opt equals 8),
suboptimumnumber (called “7 ON”), optimumnumber+suboptimumnumber
(called “7 or 8 ON”), shouldbeonnumber (called “7 not 8”), neuronson
(called “neurons ON”).

For the banyan interconnection, the file gives the following information every time
the demonstrator is run (for each one of the test values):

��The values of NNetCtrlForm->A, NNetCtrlForm->B, NNetCtrlForm->beta,
NNetCtrlForm->it, requestnumber, load, resultnumber.

��The values of resultnumber (called “result”), validnumber (called “valid”),
neuronson (called “neurons ON”), missingneurons (called “missing”).

3) The custom request window (NNetCustReq):

This window allows the user to:

��Write his own request matrix with any real request values.
��Run a certain number of iterations of the current optimisation.
��Read the different matrices from the DSP memories.

Only one request matrix is sent to the DSPs at a time here.

a) Variables and functions:

size, type, synchronisation, load:
These variables are redefined here but play the same role as in the main program.

value:
double CustReq->value

This variable indicates the request value: the value that will be used in the request
matrix. Its default value is 1.0.

**request, **evol, **out, **noise, **oorder, **in, **mem:
double CustReq->**request
unsigned int CustReq->**out
int CustReq->**in
int CustReq->**mem
unsigned int CustReq->**noise
unsigned int CustReq->**oorder
double CustReq->**evol

These are all two-dimensional matrices that can be displayed in the state grid.
**request is the request matrix that will be sent to the DSPs.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 23

**out, **in, **mem, **noise, **oorder are respectively the output matrix, the input
matrix, the neurons’ memory matrix, the noise matrix and the zeroth order matrix that
will be read from the DSPs.
**evol is the evolution matrix which represents f(mem) (see chapter I called “DSP
program”).

display:
int CustReq->display

This variable indicates the matrix that is currently displayed. It can be
REQUEST_PLANE, OUT_PLANE, IN_PLANE, MEM_PLANE, EVOL_PLANE, NOISE_PLANE,
OORDER_PLANE or INNOISE_PLANE. The default value is REQUEST_PLANE.
INNOISE_PLANE corresponds to a matrix that is the sum of **in and **noise.

iterations:
int CustReq->iterations

This variable indicates the number of iterations that have been run so far in the current
optimisation.

resnumber:
int CustReq->resnumber

This variable indicates the number of results that have been received from the DSPs.
If the demonstrator works as expected, its value is 1, as only one matrix request is sent
when using the custom request window.

valid:
bool CustReq->valid

This Boolean indicates whether the current output matrix is a valid result or not.

activeneurons:
int CustReq->activeneurons

This variable indicates the current number of neurons on.

InterpretResult:
void __fastcall CustReq->InterpretResult()

This function interprets the current output matrix: it updates the values of valid and
activeneurons.

UpdateDisplay:
void __fastcall CustReq ->UpdateDisplay()

This function updates the matrix that is displayed, depending on the value of display.

b) User interface:

See figure 4 of appendix 2.

* Main controls:

DOE type, Array size, Synchronisation:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 24

The type of interconnection (crossbar or banyan), the size of the neuron array (6�6 or
8�8, only for the crossbar interconnection), and the type of synchronisation (optical or
hardware) can be chosen using these three radio boxes.

Request value:
This specifies the request value. It alters the value of value. To change a value of the
request matrix, double-click the corresponding cell when the request matrix is
displayed. This writes the request value in the cell. If the value in the cell is not 0,
double-clicking writes a 0 in the cell.

Load:
This specifies the load: the number of neurons that will be requested in the request
matrices. It alters the value of load. The default value is 50 %: 32 neurons out of 64
for the 8�8 neuron array, 18 out of 36 for the 6�6 neuron array.

Number of iterations to run:
This specifies the number of iterations that should be performed by the neural
network. It alters the value of NNetCtrlForm->it.

Random load:
Clicking this button randomly loads the request matrix with values equal to 1. The
number of neurons requested is equal to load. If size equals 6, then no neuron is
requested in the two outer rows and the two outer columns.

Neural Network Control:
When this button is clicked, the “NNetCtrl” form is displayed modally (see the
paragraph called “The optoelectronic neural network demonstrator control module”).

Start Up:
When this button is clicked, the function NNetCtrlForm->StartUpNetwork is called
to start up the demonstrator. The function NNetCtrlForm->GetNoise is then called to
get the values of the noise matrix and the zeroth order matrix that have been measured
during the calibration. Finally the “Neuron Evolution” button and the “Run” button
are enabled.

Reset:
The values of iterations, activeneurons, resnumber, **request, **evol, **out,
**noise, **oorder, **in and **mem are reset. The request matrix is selected. Any
open disk file is closed. The “Start Up” button is enabled; the “Neuron Evolution”
button and the “Run” button are disabled.

* Run the optoelectronic neural network:

When the “Run” button is clicked, a certain number of iterations (equal to
NNetCtrlForm->it) of the current optimisation are run, using the current request
matrix. These are the steps followed:

��First the value of iterations is updated by adding NNetCtrlForm->it to the
current value of iterations.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 25

��Then the function NNetCtrlForm->ChangeItNetwork is called to send the
new value of NNetCtrlForm->it to the DSPs.

��The function NNetCtrlForm->RunSingleRequestNetwork is called to send
the request matrix, run the demonstrator and update the other matrices.

��If the number of results received is different from 1, it means that there has
been a problem while running the demonstrator, for example the
synchronisation did not work as expected. In this case the previous output
matrix and the previous neurons’ memory matrix are sent back to the DSPs
using the function NNetCtrlForm->ResetIteration. Then the demonstrator
is run again using the function NNetCtrlForm->RunSingleRequestNetwork
until the number of results received is equal to 1.

��The function InterpretResult is called to interpret the output matrix
received.

��The interpretation of the result is written in the memo with the label “Result”.
It indicates whether the matrix is valid or not (valid). If it is valid, it indicates
the number of neurons on (activeneurons) and the number of iterations run
so far (iterations).

��The function UpdateDisplay is called to update the matrix that is currently
displayed.

If an error occurs while controlling the DSPs, an error dialogue box appears, the
function is stopped and the “Reset” button is enabled.

* Select the matrix to be displayed:

The buttons in this group box are used to choose the matrix that is displayed. They
alter the value of display and call the function UpdateDisplay.

* Neuron evolution:

This group box is used to have an idea of the evolution of the neurons during an
optimisation. The iterations are run one by one and the evolution matrix is written in a
file at the end of each iteration. These are the steps followed:

��First a file is opened with the name specified in the edit box with the label
“Write neuron evolution to file”.

��Then NNetCtrlForm->it is given the value 1. The function
NNetCtrlForm->ChangeItNetwork is called to send the new value of
NNetCtrlForm->it to the DSPs.

��The demonstrator is run as when clicking “Run”. This is done a number of
times that corresponds to the value in the edit box with the label “Number of
iterations to run”. Each time, the evolution matrix is written in the file as a
single line to give a table of the evolution of the 64 neurons.

��The function InterpretResult is called and the interpretation of the result is
written in the file.

��The file is closed and NNetCtrlForm->it is given its original value
back.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 26

III) Results and discussion:

1) Optical system:

a) Description:

The optical system is composed of the following elements, as shown in the following
figure (not to scale):

��The VCSEL array, placed at d = 0.
��Lens 1, focal length f1 = 150 mm, placed at d = d1.
��Lens 2, focal length f2 = 24 mm, placed at d = d2.
��The DOE (diffractive optic element), placed at d = d3.
��The detector array, placed at d = d4 = 180 mm.

The magnification � between the VCSELs and the detectors has to be � = 6.
Just for memory, here are the values of d4 and � as functions of f1, f2, d1 and d2:

2
112212121

22
2

111
2
2

4
)()(
dfdfdddff

fddfddd
����

���
�

2
112212121

21

dfdfdddff
ff

����

��

The two conditions d4 = 180 mm and � = 6 are respected for the following values:

d1 = 15.5 mm
d2 = 26.675 mm

b) Zeroth order:

The zeroth order is the optical signal that is not diffracted by the DOE. The zeroth
order of the DOEs is not negligible, so some of the signal sent by a VCSEL gets to the
detector of the same neuron, which acts as an auto-inhibition. And since the neurons
that are on are not supposed to inhibit themselves, the zeroth order has to be
compensated for.

This is done during the calibration, by measuring the signal received by each detector
when the corresponding VCSEL is on. The value measured is then subtracted from
every neuron’s input when its output is equal to 1.

c) Signal and noise levels:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 27

When no VCSEL is on, the signal is, as read by the DSPs:

signal = 0 � 6
For the crossbar DOE, the signal received when one VCSEL (in the same row or same
column) is on is, as read by the DSPs:

signal = 16 � 4

For the banyan DOE, the signal received when one VCSEL (in the same row or same
column) is on is, as read by the DSPs:

signal = 9 � 4

For both DOEs, when only one VCSEL is on, the signal received on a detector that is
in an adjacent row or column is, as read by the DSPs:

signal = 4 � 4
This gives a measure of the cross talk from one row (or column) to the next.

d) Problems:

The problems with the optical system as it is now are the following:

* Weak optical signals:

From the optical power that is emitted by a VCSEL, only a small part reaches the
detectors that are aimed at. In theory, the DOEs have an efficiency of about 50 %
(1/2) and the DOE divides the power into a given number of spots.
For the crossbar DOE, the number of spots is 28, so the original optical power is
divided by 2 * 28 = 56.
For the banyan DOE, the number of spots is 48, so the original optical power is
divided by 2 * 48 = 96.
This explains why about 40 % of the signal is lost when changing the DOE from
crossbar to banyan. This induces a worse signal to noise ratio.

What could be done to improve the signal to noise ratio is increase the VCSEL output
power, use DOEs with better efficiencies or decrease the noise. But the VCSELs used
can’t be driven with a higher current, as it would probably damage them quickly.
Besides the optical system is so small that the working distances of the DOEs and the
DOE gratings are very small, which doesn’t allow much greater values for the
efficiency. Not much can be done about the noise either, as it mainly comes from the
electronics.

* Cross talk:

As can be seen from the signal and noise levels, when only one VCSEL is on, some
signal is received on the detectors that are in adjacent rows or columns. This is what is
called cross talk: the neurons inhibit other neurons that they should not inhibit. This is
a problem when 3 or 4 neurons are on, as the signal received by some neurons that
should not be inhibited is equivalent to the signal received by neurons that should be

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 28

inhibited. This means that some neurons do not turn on when they could, which leads
to sub-optimal solutions.

* Broken VCSELs:

Two VCSELs do not work. These are the VCSELs number 27 and 48. In the test
programs, they’re never requested, in case they could induce invalid results. Because
of this the load cannot exceed 96.875 % (62 out of 64) for the 8�8 neuron array. It
cannot exceed 97.22 % (35 out of 36) for the central 6�6 neuron array.

2) Crossbar switch results:

The figures described in this part refer to appendix 3. All the results were obtained
with the following parameters:

� = 0.02
number of iterations = 300

threshold = 0.5

The first two parameters that must be optimised in order to have good results are the
weight A and the bias B. Figure 1 shows the evolution of the validity when A and B
vary, with a load equal to 50 %. We can see that the validity can be equal to about 100
%, but that it drops for low values of A or big values of B. Figure 2 shows the
evolution of the average number of neurons on. We can see that the number of
neurons on decreases when A increases or when B decreases, the maximum number
of neurons on being 8. The best results correspond to a validity of about 100 % and a
maximum of neurons on. This is obtained for:

A = 1.05
B = 16

The results are about the same when A increases or when B decreases. Figure 3 shows
the evolution of the results as a function of B and with A = 1.05. This figure shows
that the validity drops when B is too high. It shows that the optimality increases with
B, and that it naturally decreases with the validity. The best result is for B = 16, the
optimality has its highest value with a good validity. When B<16, some results only
have 7 neurons on when they could have 8. This is due to cross talk, which induces
sub-optimal results. But this can be compensated for with a higher value for the bias.

With A = 1.05 and B = 16, for the 8�8 neuron array and with a load equal to 50 %, we
got on average:

validity = 99.9 %
average number of neurons on = 7.67

optimality = 67 %
number of results with 7 neurons on instead of 8 = 1.5 %

The most interesting results are those given when the load varies from 0 % to 100 %.
Figure 4 shows the evolution of the results as a function of the load with A = 1.05 and
B = 16. We can see that the optimality increases with the load and that the results
always have 7 or 8 neurons on when the load is greater than 40 %. The validity keeps

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 29

a value greater than 95 % when the load is greater than 15 %. The number of results
with 7 neurons on instead of 8 always stays below than 10 %.

Figure 5 shows the average number of neurons on as a function of the load. The shape
of the graph corresponds to the results that Dr Keith Symington got with the software
simulation of the optoelectronic neural network.

Although quite satisfying, the results shown on figures 4 and 5 are too instable and
there are too many invalid results. We realised that this was due to unexpected input
values in the first column of the neuron array (see “remarkable results” a bit further
on). So we did the same experiment using only an array of 6�6 neurons, the central
ones. The next results for the crossbar DOE all correspond to the central 6�6 neuron
array. Figure 6 thus shows the evolution of the results as a function of the load. In this
case the validity remains equal to 100 % when the load is greater than 25 % and the
number of results with 7 neurons on when they could have 8 remains smaller than 1
%.

With A = 1.05 and B = 16, for the central 6�6 neuron array and with a load equal to
50 %, we got on average:

validity = 100 %
average number of neurons on = 5.65

optimality = 65.4 %
number of results with 7 neurons on instead of 8 = 0 %

The same results were obtained with a smaller number of iterations. For the 6�6
neuron array, 100 iterations were enough to get these results, whereas 300 iterations
were always needed for the 8�8 neuron array.

Although the last figure is very satisfying, there is a problem: the validity drops for
small loads (inferior to 15 %). The problem is that for small loads, the value of the
bias B should be smaller to get good results. For example with a small load, when
only two neurons are requested and they are in the same row or column, a value of B
that is too high doesn’t allow to solve the problem: one neuron alone will not be
enough to inhibit the other, so both will turn on and the result will be invalid. Figure 7
shows the evolution of the results when only two neurons are requested and they are
in the same row or column. The figure shows that the problem is solved every time
with B<12.5.

In order to get good values of the validity even for small loads, the experiment shown
in figure 6 is done again with B<12.5. Figure 8 thus shows the evolution of the results
as a function of the load with B = 12. In this case the validity remains equal to 100 %
whatever the load. The number of results with 7 or 8 neurons on is the same as
previously. What changes is the optimality, which is lower, and the number of results
that should have 8 neurons on instead of 7, which increases with the load. Indeed a
lower value of B induces this sort of problem, as seen before.

Figure 9 corresponds to the same experiment as figure 8. It shows the average number
of neurons on and the average number of neurons that could be on as a function of the

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 30

load. In this case the actual results are not optimal but all the results are valid, which
is more important.

3) Banyan switch results:

The figures described in this part refer to appendix 4. All the following results were
obtained with the following parameters:

� = 0.02
number of iterations = 300

threshold = 0.5

Figure 1 shows the evolution of the validity when A and B vary, with a load equal to
50 %. We can see that the validity can be equal to about 100 %, but that it drops for
low values of A or big values of B. Figure 2 shows the evolution of the average
number of neurons on. We can see that the number of neurons on decreases when A
increases or when B decreases. The best results are obtained for:

A = 1.05
B = 9

The results are about the same when A increases or when B decreases. Figure 3 shows
the evolution of the results as a function of B and with A = 1.05. This figure shows
that the validity drops when B is too high. It shows that the number of neurons on
increases with B. The best result is for B = 9, the number of neurons on is the highest
with a good validity. The number of missing neurons, due to cross talk, decreases as B
increases. Indeed a higher bias tends to force the neurons to switch on.

With A = 1.05, B = 9 and a load equal to 50 %, we got on average:

validity = 99.9 %
average number of neurons on = 5.11

average number of missing neurons = 1.57

Figure 4 shows the evolution of the results as a function of the number of iterations,
with A = 1.05, B = 9 and load = 50 %. The results are very good for the region:

150 � number of iterations � 300
This means that 150 iterations are sufficient to obtain the expected results.

The most interesting results are those given when the load varies. Figure 5 shows the
evolution of the results as a function of the load with A = 1.05 and B = 9. We can see
that the validity keeps a value greater than 97 % when the load is greater than 15 %.
The number of neurons on increases with the load, but never exceeds 5.4. The number
of missing neurons also increases with the load, almost linearly. The number of
neurons that should be on is the sum of the number of neurons on and the number of
missing neurons. It is the curve that we would expect to get for the number of neurons
on if the system were perfect. Although the results are valid they are not optimal, and
that it because in the case of the banyan DOE the signal to noise ratio is too low and
we can’t compensate for this with a higher value of B without losing the validity.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 31

There is another problem that appears in figure 5: the validity drops for small loads
(inferior to 15 %). The problem is the same as that encountered with the crossbar
interconnection; the value of B is too high. Figure 6 shows the evolution of the results
as a function of B when only two neurons are requested and they are in the same row
or column. The figure shows that the problem is solved every time with B�6.

In order to get good values of the validity even for small loads, the experiment shown
in figure 5 is done again with B�6. Figure 7 thus shows the evolution of the results as
a function of the load with B = 6. In this case the validity remains equal to 100 %
whatever the load. The problem is that there are even less neurons on, and the average
number of neurons on cannot exceed 3.8. Indeed a lower value of B induces this sort
of problem, as seen before. The signal to noise ratio would have to be improved and
the cross talk reduced to be able to get better results, i.e. a curve for the number of
neurons on that approaches the theoretical one and goes up to 8 when the load is equal
to 100 %.

4) Discussion: the neural network parameters

First of all, all the results I got for the demonstrator correspond to request matrices
with only the values 0 and 1. This means that the neurons were either requested or
not. In real situations, it could be interesting to test the system with different request
values, which has not been done here. But it could be done by slightly altering the
C++ program. The DSP program and the optoelectronic neural network demonstrator
control module allow different real request values as they are now.

The most important results to test the optoelectronic neural network demonstrator for
scheduling are the validity and the optimality. The optimality corresponds to having
as many neurons on as possible, as it means that the throughput of the switch will be
as high as possible. But the most important is that the validity should always be 100
%, even if it means that the results should not be optimal. Indeed invalid results are
very difficult to deal with. A switch will not allow invalid interconnection, so another
device would be needed to get rid of the invalid results. But that can’t be done, as it
would mean losing the speed of scheduling made possible by the neural network. So
all the results really have to be valid.

The neural network parameters A and B play a very important role in the
optimisation. Their values are critical to get valid and (or) optimal results. As has
been said before, the roles of A and B are very similar. An increase in A is equivalent
to a decrease in B. This is because of the definition of the neural network calculation
formula for the neuron’s memory value “mem”:

mem = previous value of mem - A*input + B
An increase in the weight A gives more importance to the input, which decreases
“mem” and so inhibits the neurons. This is the same as a decrease in the bias B, which
gives more importance to the input and the inhibition. Let i1 be the value of the input
of a neuron when just one other neuron communicates with it. To have good results, A
and B must be such as:

A * i1 � B
The best results are obtained for:

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 32

A * i1 � B
This leaves an infinite number of solutions with A/B constant. In the following
paragraphs the effects of a change in B are explained. The same would be true with a
change in A.

If the value of B is too high, there are invalid results because not enough importance
is given to the neurons’ inhibitory inputs. On the other hand, if B is too low, “mem”
can never increase because the noise in the input is enough to inhibit the neurons. So
the neurons never switch on and the results are not optimal. A compromise between
validity and optimality has to be done to find the best value of B. If the signal to noise
ratio was improved, it would mean that the results would be optimal even for smaller
values of B. It would increase the range of values of B for which the results have both
satisfying validity and optimality (the stability range). Indeed we can see that the
stability range is larger in the case of the crossbar interconnection, where the signal to
noise ratio is about 4, than in the case of the banyan interconnection, where the signal
to noise ratio is about 2 (see figure 3 of appendix 3 and figure 3 of appendix 4). The
interesting thing to notice is that we still managed to get results with a low signal to
noise ratio, which is very encouraging for the promotion of optoelectronic neural
networks.

More than the noise, it is the cross talk that represents the worst problem with the
system as it is now, because it leads to sub-optimal solutions. But what is interesting
is to see that the effect of the cross talk could be partially compensated for by
increasing the value of B within the validity range (see figure 3 of appendix 3).

As far as the experiments I carried out are concerned, a change in � has no influence
on the results. But the value of beta would probably play a role if the request values
were different from just 0 or 1.

The number of iterations needed for the optimisation to get to a stable solution is
smaller than that foreseen with the simulation. This is because the value of B is
relatively bigger than that found with the simulation. Indeed a high value of the bias B
leads to a stable solution with less iterations. The danger of allowing too few
iterations is the possibility of having invalid results.

5) Neuron evolution during optimisation:

Figure 1 of appendix 5 shows the evolution of the 64 neurons as a function of the
number of iterations during one optimisation. What is represented here is the
evolution of f(mem) for each neuron (see the first part, “DSP program”). The output is
defined as:

output = 1 if f(mem) � 0.5
output = 0 if f(mem) < 0.5

We can see that at the end 8 neurons are on and the others are off, a stable solution
has been reached after about 150 iterations. The request and result matrices are
enclosed as tables 1 and 2 of appendix 5.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 33

6) Remarkable results:

a) Input averaging:

During optimisation, the neuron’s input only consists in one measure. But although
the input is very noisy, the results are not at all changed when the neuron input is
averaged over 16 or 256 values during optimisation. This can be explained by saying
that the important number of iterations done during the optimisation induces a sort of
natural averaging of the input.

b) Lights on:

The neural optimisation was usually done in the dark, but it appears that the results
are not different when the lights are on, so with more ambient light. What is important
is that the ambient light conditions remain the same during calibration, when the
ambient light will be recorded as noise, and during optimisation.

c) Unexpected inputs in the first channel of each ADC:

As was explained earlier, a majority of invalid results come from the fact that two
neurons from the first column will be on at the same time, which is valid neither for
the crossbar switch nor for the Banyan switch. This comes from the fact that the
inputs from the detectors in the first column, so from the first channel of each ADC,
sometimes have unexpected values. On average, one time out of two the input will be
correct and the other time it will be unexpectedly low. So two neurons from the first
column sometimes can’t inhibit one another effectively.
I have not been able to find where the problem comes from, as the optical system
doesn’t seem to be cutting off one part of the optical signal in particular.

d) Broken VCSELs:

The neurons corresponding to broken VCSELs can be requested, as long as these
neurons can be on together, so they don’t lead to invalid results. Indeed these neurons
cannot inhibit any other neurons but they can be inhibited. They’ll never win over
other requested neurons but they will switch on if no neuron inhibits them. In any
case, they’ll never lead to invalid results.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator: Program and Results

 Page 34

Conclusion:

Although very satisfying, the results that are exposed here could be improved by
working on the signal to noise ratio in the system and by lowering the cross talk. But
it was interesting to show that these problems could be partially compensated for by
carefully choosing the values of the different neural network parameters.

The best speed that we could get from the system was 0.11 ms for one iteration using
the hardware synchronisation and about 150 iterations to make a decision. This means
that as it is now the system needs about 16.5 ms for each optimisation, so that it can
make about 60 decisions per second.

Theses results are very important in the sense that they prove that good results can be
obtained using an optoelectronic neural network for scheduling. To our knowledge, it
was the first time anyone got such results. It is very promising, as it leads the way to
new generations of optoelectronic neural networks used for very fast and efficient
scheduling of packet switching.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 35

Appendix 1: The DSP program (nnetwork.asm):

**
* Optoelectronic Neural Network Demonstrator *
* DSP program: nnetwork.asm *
**

**
* Initialisation of data. *
**

; Include memory-mapped registers.
 .mmregs

; Reserve DSP memory space (uninitialised data).
; Starting at adress 0d00h.
 .bss sigm, 512 ; Sigmoid function values.
 .bss aver, 256 ; Array used for averaging input values.
 .bss req, 4096 ; Request matrices (up to 256).
 .bss res, 256 ; Result words (up to 256).

; Initialised data. Starting at adress 2100h.
 .data
val: .word 00000h, 00000h ; Values of A and B.
th: .word 00000h ; Value of the threshold.
iter: .word 00000h, 00000h ; Number of iterations for each request.
synth: .word 00000h ; Synchronisation threshold.
delay: .word 00000h ; Delay in the synchronisation.
number: .word 00000h, 00000h ; Number of requests and results.
oneit: .word 00000h ; Indicates single or multiple requests.
out: .word 00000h ; Output word.
syntyp: .word 00000h ; Type of synchronisation used.
in: .word 00000h, 00000h, 00000h, 00000h ;Input matrix.
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
mem: .word 00000h, 00000h, 00000h, 00000h ; Memory matrix.
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
sel: .word 00100h, 00001h, 00200h, 00002h ; Selection words.
 .word 00400h, 00004h, 00800h, 00008h
 .word 01000h, 00010h, 02000h, 00020h
 .word 04000h, 00040h, 08000h, 00080h
store: .word 00000h ; Word used to store values.
reqloc: .word 00000h ; Location of the current request value.
resloc: .word 00000h ; Location of the current result value.
itnb: .word 00100h, 00000h ; Gives 256 iterations for averaging.
syn: .word 00008h ; VCSEL used for the synchronisation.
temp: .word 00000h, 00000h ; To store input values temporarily.
av: .word 00000h, 00000h ; To store values for averaging.
noise: .word 00000h, 00000h, 00000h, 00000h ; Noise matrix.
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
oorder: .word 00000h, 00000h, 00000h, 00000h ; Zeroth order matrix.
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
 .word 00000h, 00000h, 00000h, 00000h
zero: .word 00000h ; Value equal to 0.
one: .word 01000h ; Value equal to 1 (Q12).
three: .word 00003h, 00000h ; Value equal to 3 (and storing word).
four: .word 00004h ; Value equal to 4.
sixtn: .word 00010h ; Value equal to 16.

; Program. Starting at adress 0a00h.
 .text

**
* Input subtroutines for each channel. *
**

; Subroutines used to select an ADC, store an input value and start an

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 36

; analogue to digital conversion.
ch1: IN *+, 00200h, AR0 ; Store an input and select an ADC.
 IN *-, 00100h, AR0 ; Start the conversion.
 RET ; Return from sub-routine.
ch2: IN *+, 02600h, AR0
 IN *-, 00100h, AR0
 RET
ch3: IN *+, 04a00h, AR0
 IN *-, 00100h, AR0
 RET
ch4: IN *+, 06e00h, AR0
 IN *-, 00100h, AR0
 RET
ch5: IN *+, 09200h, AR0
 IN *-, 00100h, AR0
 RET
ch6: IN *+, 0b600h, AR0
 IN *-, 00100h, AR0
 RET
ch7: IN *+, 0da00h, AR0
 IN *-, 00100h, AR0
 RET
ch8: IN *+, 0fe00h, AR0
 IN *-, 00100h, AR0
 RET

* *****************************
* * Switch VCSELs off. *
* * Starting at adress 0a28h. *
* *****************************

**
* DSK board initialisation. *
* See TI document SPRA253.pdf for further information. *
**

; Initialise TMS320C50 On-chip timer.
; Load PRD register for period of 100nsec TDDR=0
 SPLK #01h, PRD
; Re-load and begin timer.
 SPLK #20h, TCR

; Serial port initialisation.
; FSM=1, XRST and RRST=00
 SPLK #08h, SPC
; FSM=1, XRST and RRST=11
 SPLK #0c8h, SPC

; AIC Initialisation.
; Init 8000h-FFFFh as global memory.
 LACC #80h
; Store to global memory alloc register.
 SACL GREG
; Use AR0 to point to location FFFFh.
 LAR AR0, #0FFFFh
; Access global memory 10,000 times to drive pin
; low for duration.
 RPT #10000
 LACC *, 0, AR0
; Restore GREG to 0000.
 SACH GREG

**
* Zero output (switch the VCSELs off). *
**

 LAR AR0, #zero ; Load zero value location (AR0).
 MAR *, AR0 ; Select auxiliary register AR0.
 OUT *, 00000h, AR0 ; Send zero to output (VCSELs).
end1: B end1 ; Infinite loop.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 37

* *****************************
* * Calibration. *
* * Starting at adress 0a40h. *
* *****************************

**
* DSK board initialisation. *
* See TI document SPRA253.pdf for further information. *
**

; Initialise TMS320C50 On-chip timer.
; Load PRD register for period of 100nsec TDDR=0
 SPLK #01h, PRD
; Re-load and begin timer.
 SPLK #20h, TCR

; Serial port initialisation.
; FSM=1, XRST and RRST=00
 SPLK #08h, SPC
; FSM=1, XRST and RRST=11
 SPLK #0c8h, SPC

; AIC Initialisation.
; Init 8000h-FFFFh as global memory.
 LACC #80h
; Store to global memory alloc register.
 SACL GREG
; Use AR0 to point to location FFFFh.
 LAR AR0, #0FFFFh
; Access global memory 10,000 times to drive pin
; low for duration.
 RPT #10000
 LACC *, 0, AR0
; Restore GREG to 0000.
 SACH GREG

**
* Calibration. *
**

 LAR AR0, #temp ; Load location of temporary input (AR0).
 LAR AR1, #av ; Location of word used for averaging (AR1).
 LAR AR2, #noise ; Location of noise matrix (AR2).
 LAR AR4, #oorder ; Location of zero order matrix (AR4).
 LAR AR6, #sel ; Location of selection words (AR6).
 LAR AR7, #zero ; Location of zero value (AR7).
 MAR *, AR0 ; Select AR0 register.

; Noise and zeroth order values for the first channel (2 neurons):
 CALL ch1 ; Call input subroutine for channel 1.
 CALL sub0 ; Call subroutine 0.
ini1: CALL sub1 ; Call subroutine 1.
cha1: CALL ch1 ; Call input subroutine for channel 1.
 CALL sub2 ; Call subroutine 2.
 BGZ cha1 ; Branch cha1 if accumulator>0.
 CALL sub3 ; Call subroutine 3.
 BGZ ini1 ; Branch ini1 if accumulator>0.

; The same for the seven other channels (remaining 14 neurons):
 CALL ch2
 CALL sub0
ini2: CALL sub1
cha2: CALL ch2
 CALL sub2
 BGZ cha2
 CALL sub3
 BGZ ini2

 CALL ch3
 CALL sub0
ini3: CALL sub1
cha3: CALL ch3
 CALL sub2

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 38

 BGZ cha3
 CALL sub3
 BGZ ini3

 CALL ch4
 CALL sub0
ini4: CALL sub1
cha4: CALL ch4
 CALL sub2
 BGZ cha4
 CALL sub3
 BGZ ini4

 CALL ch5
 CALL sub0
ini5: CALL sub1
cha5: CALL ch5
 CALL sub2
 BGZ cha5
 CALL sub3
 BGZ ini5

 CALL ch6
 CALL sub0
ini6: CALL sub1
cha6: CALL ch6
 CALL sub2
 BGZ cha6
 CALL sub3
 BGZ ini6

 CALL ch7
 CALL sub0
ini7: CALL sub1
cha7: CALL ch7
 CALL sub2
 BGZ cha7
 CALL sub3
 BGZ ini7

 CALL ch8
 CALL sub0
ini8: CALL sub1
cha8: CALL ch8
 CALL sub2
 BGZ cha8
 CALL sub3
 BGZ ini8

end2: B end2 ; Infinite loop.

**
* Calibration. Subroutines. *
**

; Subroutine 0: initialisation of the storing word following "three"
; in memory. It indicates one of the three stages in the calibration:
sub0: MAR *, AR5 ; Select AR5.
 LAR AR5, #three ; Load location of the value three (AR5).
 LAC *+, 0, AR5 ; Load accumulator with this value.
 SACL *, 0, AR0 ; Store this value in the next word.
 RET ; Return from subroutine.

; Subroutine 1: initialisation of the averaging words and the storing
; word following "itnb". It indicaties the current iteration:
sub1: MAR *, AR1 ; Select AR1 (averaging word).
 RPT #100 ; Repeat 100 times NOP.
 NOP ; No operation: wait for conversion.
 LAC #00000h ; Load accumulator with the value 0.
 SACL *+, 0, AR1 ; Store 0 in first averaging word.
 SACL *-, 0, AR3 ; Store 0 in second averaging word.
 LAR AR3, #itnb ; Location of number of iterations (AR3).
 LAC *+, 0, AR3 ; Load accu with this value (256).
 SACL *, 0, AR0 ; Store this value in the next word.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 39

 RET ; Return from subroutine.

; Subroutine 2: Separate the two input values (one word) and add them
; to the previous inputs for averaging. This is done 256 times (number
; of iterations = 256):
sub2: LAC *, 8, AR0 ; Load input value from ADCs.
 SACH *+, 0, AR0 ; Store first input value.
 SACL *, 0, AR0 ; Store second input value (shifted).
 LAC *, 8, AR0 ; Load and shift second value.
 SACH *-, 0, AR1 ; Store second input value again.
 LAC *, 0, AR0 ; Load the first averaging word.
 ADD *+, 0, AR1 ; Add the first input value.
 SACL *+, 0, AR1 ; Store in the first averaging word.
 LAC *, 0, AR0 ; Load the second averaging word.
 ADD *-, 0, AR1 ; Add the second input value.
 SACL *-, 0, AR3 ; Store in the second averaging word.
 RPT #100 ; Repeat 100 times NOP.
 NOP ; No operation: wait for conversion.
 LAC *, 0, AR3 ; Load the remaining number of
 SUB #1 ; iterations and subtract 1.
 SACL *, 0, AR0 ; Store the value.
 RET ; Return from subroutine.

; Subroutine 3: According to the calibration stage, store average
; values in the noise or zeroth order matrices:
sub3: MAR *, AR5 ; Select AR5 (calibration stage).
 LAC *, 0, AR1 ; Load number of calibration stage.
 SUB #1 ; Subtract 1.
 BZ un ; If the value = 0, branch "un".
 SUB #1 ; Subtract 1.
 BZ deux ; If the value = 0, branch "deux".
; If the calibration stage is number 3 (noise value):
 LAC *+, 8, AR2 ; Load, shift first averaging value.
 SACH *+, 0, AR1 ; Store in the first noise location.
 LAC *-, 8, AR2 ; Load, shift second averaging value.
 SACH *-, 0, AR6 ; Store in the second noise location.
 OUT *+, 00000h, AR5 ; Send selection word (one VCSEL on).
 B endsub ; Branch end of subroutine 3.
; If the calibration stage is number 2 (first zeroth order value):
deux: LAC *, 8, AR4 ; Load, shift first averaging value.
 SACH *, 0, AR4 ; Store: first zeroth order location.
 LAC *, 0, AR2 ; Load the value again.
 SUB *+, 0, AR4 ; Subtract the corresponding noise.
 SACL *+, 0, AR6 ; Store the value again.
 OUT *+, 00000h, AR5 ; Send selection word (one VCSEL on).
 B endsub ; Branch end of subroutine 3.
; If the calibration stage is number 1 (second zeroth order value):
un: MAR *+, AR1 ; Select second averaging word.
 LAC *-, 8, AR4 ; Load, shift second averaging value.
 SACH *, 0, AR4 ; Store: second zeroth order location.
 LAC *, 0, AR2 ; Load the value again.
 SUB *+, 0, AR4 ; Subtract the corresponding noise.
 SACL *+, 0, AR7 ; Store the value again.
 OUT *, 00000h, AR5 ; Send zero value (all VCSELs off).
endsub: LAC *, 0, AR5 ; Load the number of the calibration
 SUB #1 ; stage and subtract 1.
 SACL *, 0, AR0 ; Store the value.
 RET ; Return from subroutine.

* *******************************
* * Neural network calculation. *
* * Starting at adress 0b28h. *
* *******************************

**
* DSK board initialisation. *
* See TI document SPRA253.pdf for further information. *
**

; Initialise TMS320C50 On-chip timer.
; Load PRD register for period of 100nsec TDDR=0
 SPLK #01h, PRD

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 40

; Re-load and begin timer.
 SPLK #20h, TCR

; Serial port initialisation.
; FSM=1, XRST and RRST=00
 SPLK #08h, SPC
; FSM=1, XRST and RRST=11
 SPLK #0c8h, SPC

; AIC Initialisation.
; Init 8000h-FFFFh as global memory.
 LACC #80h
; Store to global memory alloc register.
 SACL GREG
; Use AR0 to point to location FFFFh.
 LAR AR0, #0FFFFh
; Access global memory 10,000 times to drive pin
; low for duration.
 RPT #10000
 LACC *, 0, AR0
; Restore GREG to 0000.
 SACH GREG

**
* Hardware synchronisation (interruption). *
**

 LAR AR0, #syntyp ; Load location of type of synchronisation.
 LAC *, 0, AR0 ; Load type of synchronisation.
 BGZ optics ; If the type of synchronisation is different from
0, branch "optics".
dum: B dum ; Infinite loop.
 CLRC INTM ; The C++ program branches this point. The
interruption mask bit is cleared.
 LAC IMR ; Load the interruption mask register.
 OR #00001h ; Set the bit that coreesponds to INT1\.
 SACL IMR ; Store the interruption mask register back.
 LAR AR0, #zero ; Load location of value 0.
 OUT *, 00080h, AR0 ; Send 0 to output and use the address that is used
for the interruption.
wait: B wait ; Infinite loop.

**
* Optical synchronisation. *
* Initialisation of the averaging table "aver". *
**

optics: LAR AR0, #aver ; Load location of averaging table (AR0).
 LAR AR5, #itnb ; Location of number of iterations (AR5).
 MAR *, AR5 ; Select AR5.
 LAC *, 0, AR0 ; Load number of iterations (256).
a: SPLK #0, *+, AR0 ; Store 0 in averaging table.
 SUB #1 ; Subtract 1 to accumulator.
 BGZ a ; Branch "a" until accu = 0.

**
* Optical synchronisation. *
**

 LAR AR0, #syn ; Load location of word indicating the VCSEL used
for the synchronisation (AR0).
 OUT *, 00000h, AR0 ; Send word to output.

 LAR AR0, #temp ; Load location of temporary values (AR0).
 LAR AR1, #av ; Load location of averaging word (AR1).
 LAR AR2, #synth ; Load location of synchronisation threshold (AR2).
 LAR AR4, #noise+6 ; Load location of noise value corresponding to the
detector used for the synchronisation (AR4).

 CALL ch4 ; Call input subroutine for channel 4.
 RPT #100 ; Repeat "NOP" 100 times: wait for the ADC
conversion.
 NOP
 MAR *, AR1 ; Select auxiliary register AR1.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 41

 LAC #00000h ; Load value 0 in accumulator.
 SACL *, 0, AR5 ; Store value 0 in first averaging word
(initialisation).
loop: LAR AR3, #aver ; Load location of beginning of averaging matrix
(AR3).
 LAR AR5, #itnb ; Load location of number of iterations for
averaging: 256 (AR5).
 LAC *+, 0, AR5 ; Load accumulator with number of iterations.
 SACL *, 0, AR0 ; Store number of iterations in following memory
word (initialisation of current itearation).
c: CALL ch4 ; Call input subroutine for channel 4.
 LAC *, 8, AR0 ; Load and shift input values from the ADC to keep
the second one.
 SACH *, 0, AR0 ; Store second input value (in the most significant
part of the accumulator).
 LAC *, 0, AR1 ; Load the input value again (not shifted).
 ADD *, 0, AR3 ; Add the current averaging value.
 SUB *, 0, AR1 ; Subtract the oldest value in the averaging
matrix.
 SACL *, 0, AR0 ; Store the averaging value obtained.
 LAC *, 0, AR3 ; Load the input value again.
 SACL *+, 0, AR1 ; Store the value in the averaging matrix.
 LAC *+, 8, AR1 ; Load the averaging value calculated earlier and
shift it (to divide it by 256).
 SACH *, 0, AR1 ; Store the higher part of the accumulator in the
second averaging word.
 LAC *-, 0, AR4 ; Load that value again.
 SUB *, 0, AR2 ; Subtract the noise corresponding to the detector
used.
 SUB *, 0, AR5 ; Subtract the synchronisation threshold.
 BGEZ then ; If the result is greater or equal to 0, branch
"then": following of the program.
 RPT #100 ; Repeat "NOP" 100 times: wait for the ADC
conversion.
 NOP
 LAC *, 0, AR5 ; Load the number of the current iteration (out of
256).
 SUB #1 ; Subtract 1.
 SACL *, 0, AR0 ; Store the value.
 BGZ c ; Branch "c" if the result is greater than 0.
 MAR *, AR5 ; Select AR5.
 B loop ; Branch "loop" unconditionnally when this point is
reached.

**
* Neural network calculation. Initialisation and output. *
**

then: LDP #66 ; Load data memory page pointer with the value 66
which indicates adresses 21xxh.
 LAR AR0, #number+1 ; Load location of the word following the number of
requests and results (AR0).
 MAR *, AR0
 SPLK #0, *, AR0 ; Initialisation of this word (value 0): it
indicates the number of the current request.
 LAR AR0, #reqloc ; Load location of the word containing the current
request matrix location (AR0).
 SPLK #01000h, *, AR0 ; Initialisation of this word (value 1000h,
beginning of the request matrices).
 LAR AR0, #resloc ; Load location of the word containing the current
result word location (AR0).
 SPLK #02000h, *, AR0 ; Initialisation of this word (value 2000h,
beginning of the result words).

; Beginning of the loop for a new request matrix.
next: LAR AR0, #oneit ; Load location of the word indicating if the
request are multiple or not (AR0).
 LAC *, 0, AR0 ; Load accumulator with that value (1 if single
request, 0 if multiple)
 BGZ sinit ; Branch "sinit" if the value is greater than 0.
 LAR AR0, #mem ; Load location of the memory matrix (AR0).
 LAC #00010h ; Load accumulator with the value 16.
imem: SPLK #0, *+, AR0 ; Initialisation of the memory matrix values (value
0).

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 42

 SUB #1 ; Subtract 1 to accumulator (will be done 16
times).
 BGZ imem ; Branch "imem" if the result is greater than 0.
 LAR AR0, #out ; Load location of output word (AR0).
 SPLK #0, *, AR0 ; Initialise output word (value 0).
sinit: LAR AR0, #iter ; Load location of number of iterations (AR0).
 LAC *+, 0, AR0 ; Load accumulator with number of iterations.
 SACL *, 0, AR0 ; Store the value in the following memory word:
indicates the current iteration.

begin: LAR AR0, #delay ; Load location of the synchronisation delay word
(AR0).
 LAC *, 0, AR4 ; Load the synchronisation delay value (n).
count1: SUB #1 ; Subtract 1: this will be done n times.
 BGZ count1 ; Branch "count1" if the result is greater than 0.
 LAR AR4, #out ; Load output word location (AR4).
 OUT *, 00000h, AR0 ; Send output word to output (VCSELs are switched
on or off).
 LAC *, 0, AR0 ; Load the synchronisation delay value (n).
count2: SUB #1 ; Subtract 1: this will be done n times.
 BGZ count2 ; Branch "count2" if the result is greater than 0.

**
* Neural network calculation. Input. *
**

 LAR AR0, #in ; Load input matrix location (AR0).
 CALL ch1 ; Call input subroutine for channel 1.
 RPT #100 ; Repeat "NOP" 100 times: wait for the ADC
conversion.
 NOP
 LAR AR1, #sel ; Load selection values location (AR1).
 LAR AR2, #oorder ; Load oorder matrix location (AR2).
 LAR AR3, reqloc ; Load location of the current request value,
contained in memory word "reqloc" (AR3).
 LAR AR6, #mem ; Load memory matrix location (AR6).
 LAR AR7, #noise ; Load noise matrix location (AR7).
 CALL ch2 ; Call input subroutine for channel 2.
 CALL calc ; Call subroutine "calc".
 CALL ch3 ; Call input subroutine for channel 3.
 CALL calc ; Call subroutine "calc".
 CALL ch4 ; Call input subroutine for channel 4.
 CALL calc ; Call subroutine "calc".
 CALL ch5 ; Call input subroutine for channel 5.
 CALL calc ; Call subroutine "calc".
 CALL ch6 ; Call input subroutine for channel 6.
 CALL calc ; Call subroutine "calc".
 CALL ch7 ; Call input subroutine for channel 7.
 CALL calc ; Call subroutine "calc".
 CALL ch8 ; Call input subroutine for channel 8.
 CALL calc ; Call subroutine "calc".
 CALL ch1 ; Call input subroutine for channel 1.
 CALL calc ; Call subroutine "calc".

 LAR AR4, #iter+1 ; Load location of current iteration number (AR4).
 MAR *, AR4 ; Select register AR4.
 LAC *, 0, AR4 ; Load accumulator with current iteration number.
 SUB #1 ; Decrement iteration number.
 SACL *, 0, AR4 ; Store iteration number.
 BGZ begin ; Branch beginning of loop for the next iteration if
the iteration number is greater than 0.

 LAR AR0, #out ; Load output word location (AR0).
 LAR AR1, resloc ; Load location of current result word (AR1).
 LAR AR2, #resloc ; Load location of word containing the address of the
current result word (AR2).
 MAR *, AR0 ; Select register AR0.
 LAC *, 0, AR1 ; Load accumulator with output word.
 SACL *, 0, AR2 ; Store the word at the current result location.
 LAC *, 0, AR2 ; Load accumulator with result location word.
 ADD #1 ; Add 1: increment the result location word, move on
to the next result.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 43

 SACL *, 0, AR0 ; Store the value obtained in the word containing the
address of the current result word.

 LAR AR0, #reqloc ; Load location of word containing the address of the
current request matrix (AR0).
 LAC *, 0, AR0 ; Load acumulator with request location word.
 ADD #16 ; Add 16: increment the request matrix location, move
on to the next request.
 SACL *, 0, AR0 ; Store the value obtained.

 LAR AR0, #number+1 ; Load location of the current request (AR0).
 LAC *, 0, AR0 ; Load accumulator with the current request number.
 ADD #1 ; Add 1: increment the current request number.
 SACL *-, 0, AR0 ; Store the value back.
 SUB *, 0, AR0 ; Subtract the total number of requests (word that is
just before).
 BLZ next ; Branch beginning of calculation for the next
request matrix if needed.

end3: B end3 ; Inifinite loop.

**
* Neural network calculation (subroutine "calc"). *
**

calc: LAC *, 8, AR0 ; Load input values from ADCs. The two values form a
single word (two bytes) and will be separated.
 SACH *+, 0, AR0 ; Store first input value.
 SACL *, 0, AR0 ; Store second input value (shifted).
 LAC *, 8, AR0 ; Load and shift second value.
 SACH *-, 0, AR0 ; Store second input value again.
 LAC *, 0, AR7 ; Load first input value.
 SUB *+, 0, AR0 ; Subtract the corresponding noise value.
 SACL *+, 0, AR0 ; Store the first input value back.
 LAC *, 0, AR7 ; Load second input value.
 SUB *+, 0, AR0 ; Subtract the corresponding noise value.
 SACL *-, 0, AR4 ; Store the second input value back.

 LAC *, 0, AR1 ; Load the current output word.
 AND *+, AR0 ; Logical "and" with a selection word: selects the
bit corresponding to the neuron concerned in the output word.
 BZ noton1 ; If the result equals 0, branch "noton1", the VCSEL
is not on.
 LAC *, 0, AR2 ; If the VCSEL is on, load the first input value
again.
 SUB *, 0, AR0 ; Subtract the corresponding zeroh order value.
 SACL *, 0, AR0 ; Store the first input value back.
noton1: MAR *+, AR2 ; Increment AR0 and select AR2.
 MAR *+, AR4 ; Increment AR2 and select AR4.
 LAC *, 0, AR1 ; Load output word.
 AND *-, AR0 ; Logical "and" with the following selection word.
 BZ noton2 ; If the result equals 0, branch "noton2", the VCSEL
is not on.
 LAC *, 0, AR2 ; If the VCSEL is on, load the second input value
again.
 SUB *, 0, AR0 ; Subtract the corresponding zeroth order value.
 SACL *, 0, AR0 ; Store the second input value back.
noton2: MAR *-, AR2 ; Decrement AR0 and select AR2.
 MAR *+, AR0 ; Increment AR2 and select AR0.

; Calculate the first memory value, using the first input value.
 LAR AR5, #store ; Load storing word location (AR5).
 LT 0 ; Load the T register with the value of A.
 MPY *+, AR6 ; Multiply by the first input value.
 PAC ; Load accumulator with result.
 NEG ; Opposite value of the accumulator.
 SACB ; Store accumulator in accumulator B.
 LAC *, 12, AR6 ; Load accumulator with memory value.
 ADDB ; Add both accumulators.
 ADD 1, 4 ; Add the value of B.
 SACH *, 4, AR6 ; Store the memory value obtained.
; Calculate address and read value of corresponding sigmoid function.
 LAC *, 0, AR6 ; Load accumulator with the memory value.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 44

 SUB #08000h ; Subtract 8000h: a value lower than 8000h is
positive and a value greater or equal to 8000h is negative.
 BGEZ a1 ; Branch "a1" if the value is negative.

; If the memory value is positive:
 LAC *, 14, AR6 ; Load and shift the memory value.
 SACH temp ; Store the memory value divided by 4 in the
temporary location "temp".
 LAC *, 0, AR6 ; Load the memory value again.
 SUB #003ffh ; Subtract 3ffh: if the value is greater than 3ffh,
the sigmoid function value is 1.
 BLEZ b1 ; Branch "b1" if the result is lower or equal to 0.
 LAR AR5, #one ; Load location of the word containing the value 1
(format Q12) (AR5).
 MAR *+, AR5 ; Increment AR6 and select AR5.
 LT *, AR3 ; Load the T register with the value 1 (format
Q12).
 B c1 ; Branch "c1" unconditionnally.

; If the memory value is negative:
a1: LAC *, 14, AR6 ; Load and shift the memory value.
 SACH temp ; Store the memory value divided by 4 in the
temporary location "temp".
 LAC temp ; Load the value of "temp".
 ADD #0c000h ; Add c000h
 SACL temp ; Store the value obtained in "temp".
 LAC *, 0, AR6 ; Load the memory value again.
 SUB #0fc00h ; Subtract fc00h: if the value is lower or equal to
fc00h, the sigmoid function value is 0.
 BGEZ b1 ; Branch "b1" if the result is greater or equal to
0.
 LAR AR5, #zero ; Load location of the word containing the value 0
(AR5).
 MAR *+, AR5 ; Increment AR6 and select AR5.
 LT *, AR3 ; Load the T register with the value 0.
 B c1 ; Branch "c1" unconditionnally.

b1: MAR *+, AR5 ; Increment AR6 and select AR5.
 LAC temp ; Load the value of "temp".
 ADD #00e00h ; Add 0e00 to have the locvation of the sigmoid
function value.
 SACL *, 0, AR5 ; Store the value at the location "store".
 LAR AR5, store ; Load AR5 with location of the sigmoid function
value, contained in the word "store".
 LT *, AR3 ; Load the T register with the sigmoid function
value.
; Multiply by request value.
c1: MPY *+, AR1 ; Multiply by the first request value.
 PAC ; Load the accumulator with the result.
; Compare with threshold value (format Q20).
 SUB 2, 4
 BGEZ on1 ; Branch "on1" if result <0 or =0.
; Switch off corresponding VCSEL if result >0.
off1: LAC *+, 0, AR4 ; Load accumulator with selection word.
 XOR #0ffffh ; Complement of selection word.
 AND *, AR4 ; Switch bit to 0 in output.
 SACL *, 0, AR0 ; Store output word.
 B then1 ; Branch second part of subroutine.
; Switch on corresponding VCSEL.
on1: LAC *+, 0, AR4 ; Load accumulator with selection word.
 OR *, AR4 ; Switch bit to 1 in output.
 SACL *, 0, AR0 ; Store output word.

; Move on to the second memory value, using the second input value.
; The program is the same as for the irst memory value.
then1: LAR AR5, #store
 LT 0
 MPY *+, AR6
 PAC
 NEG
 SACB
 LAC *, 12, AR6
 ADDB
 ADD 1, 4

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 45

 SACH *, 4, AR6
 LAC *, 0, AR6
 SUB #08000h
 BGEZ a2

 LAC *, 14, AR6
 SACH temp
 LAC *, 0, AR6
 SUB #003ffh
 BLEZ b2
 LAR AR5, #one
 MAR *+, AR5
 LT *, AR3
 B c2

a2: LAC *, 14, AR6
 SACH temp
 LAC temp
 ADD #0c000h
 SACL temp
 LAC *, 0, AR6
 SUB #0fc00h
 BGEZ b2
 LAR AR5, #zero
 MAR *+, AR5
 LT *, AR3
 B c2

b2: MAR *+, AR5
 LAC temp
 ADD #00e00h
 SACL *, 0, AR5
 LAR AR5, store
 LT *, AR3
c2: MPY *+, AR1
 PAC
 SUB 2, 4
 BGEZ on2
off2: LAC *+, 0, AR4
 XOR #0ffffh
 AND *, AR4
 SACL *, 0, AR0
 B then2
on2: LAC *+, 0, AR4
 OR *, AR4
 SACL *, 0, AR0
then2: RET ; Return from subroutine.

 .end ; End of program.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 46

Appendix 2: The optoelectronic neural network demonstrator
program (NNetDem) windows:

Figure 1: optoelectronic neural network demonstrator control module window.

Figure 2: VCSELs form window.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 47

Figure 3: optoelectronic neural network demonstrator main program window.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 48

Figure 4: custom request window.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 49

Appendix 3: Crossbar switch results:

0.
95

1.
1 1.

25

13

15

17

19
0

20

40

60

80

100

validity (%)

A
B

80-100
60-80
40-60
20-40
0-20

Figure 1: validity as a function of A and B (8�8).

0.
95 1.

05 1.
15 1.

25

13

15

17

19

6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8

average
number of
neurons on

A
B

7.8-8
7.6-7.8
7.4-7.6
7.2-7.4
7-7.2
6.8-7
6.6-6.8
6.4-6.6
6.2-6.4
6-6.2

Figure 2: average number of neurons on as a function of A and B (8�8).

0

20

40

60

80

100

10 12 14 16 18 20 22 24

B

%

valid
8 ON
7 or 8
7 not 8

Figure 3: results as functions of B (8�8).

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 50

0

20

40

60

80

100

0 20 40 60 80 100

load (%)

%
valid
8 ON
7 or 8
7 not 8

Figure 4: results as functions of the load (8�8, B = 16).

0
1

2
3
4

5
6

7
8

0 20 40 60 80 100

load (%)

av
er

ag
e

nu
m

be
r o

f n
eu

ro
ns

 o
n

Figure 5: average number of neurons on as a function of the load (8�8, B = 16).

0

20

40

60

80

100

0 20 40 60 80 100

load (%)

%

valid
6 ON
5 or 6
5 not 6

Figure 6: results as functions of the load (6�6, B = 16).

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 51

0

20

40

60

80

100

10 11 12 13 14 15 16

B

%
valid
2 ON
1 ON

Figure 7: results as functions of B for two neurons requested in the same row/column.

0

20

40

60

80

100

0 20 40 60 80 100

load (%)

%

valid
6 ON
5 or 6
5 not 6

Figure 8: results as functions of the load (6�6, B = 12).

0

1

2

3

4

5

6

0 20 40 60 80 100

load (%)

av
er

ag
e

nu
m

be
r o

f n
eu

ro
ns

neurons ON
should be ON

Figure 9: average number of neurons on as a function of the load (6�6, B = 12).

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 52

Appendix 4: Banyan switch results:

0.
85

1 1.
15

810

12

14
0

20

40

60

80

100

validity (%)

A
B

80-100
60-80
40-60
20-40
0-20

Figure 1: validity as a function of A and B.

0.
85 0.
95 1.
05 1.
158

13
0
1
2
3
4

5
6

7

8

average
number of
neurons on

A

B

7-8
6-7
5-6
4-5
3-4
2-3
1-2
0-1

Figure 2: average number of neurons on as a function of A and B.

0

1

2

3

4

5

6

7

8

6 7 8 9 10 11 12 13 14 15

B

av
er

ag
e

nu
m

be
r o

f n
eu

ro
ns

0

20

40

60

80

100

va
lid

ity
 (%

) neurons ON
missing
should be ON
valid

Figure 3: results as functions of B.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 53

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400

number of iterations

av
er

ag
e

nu
be

r o
f n

eu
ro

ns

0

20

40

60

80

100

va
lid

ity
 (%

) neurons ON
missing
should be ON
valid

Figure 4: results as functions of the number of iterations.

0
1
2
3
4
5
6
7
8

0 10 20 30 40 50 60 70 80 90 10
0

load (%)

av
er

ag
e

nu
m

be
r o

f n
eu

ro
ns

0

20

40

60

80

100
va

lid
ity

 (%
) neurons ON

missing
should be ON
valid

Figure 5: results as functions of the load (B = 9).

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10 11 12 13 14 15

B

av
er

ag
e

nu
m

be
r o

f n
eu

ro
ns

0

20

40

60

80

100

va
lid

ity
 (%

)

neurons ON
valid

Figure 6: results as functions of B for two neurons requested in the same row/column.

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 54

0
1
2
3
4
5
6
7
8

0 10 20 30 40 50 60 70 80 90 10
0

load

av
er

ag
e

nu
m

be
r o

f n
eu

ro
ns

0

20

40

60

80

100

va
lid

ity
 (%

) neurons ON
missing
should be ON
valid

Figure 7: results as functions of the load (B = 6).

Yves Randle Dept. Physics
July 2002 Heriot-Watt University
 Optoelectronic Neural Network Demonstrator Program

 Page 55

Appendix 5: Neuron evolution during optimisation:

0

0.5

1

0 50 100 150 200

number of iterations

f(m
em

)

Figure 1: example of the evolution of the neurons during an optimisation.

 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 0 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1

Table 1: the request matrix.

 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 1
5 0 0 0 1 0 0 0 0
6 0 1 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0
8 0 0 0 0 0 1 0 0

Table 2: the result matrix.

