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A novel, to our knowledge, type of packet scheduler that could significantly outperform current state-of-
the-art schedulers is presented. The operation and the design of such a scheduler are discussed, and a
fully operational experimental implementation is described. The scheduler uses a neural network in a
winner-take-all strategy to optimize decisions on the throughput of both a crossbar and a banyan
switching fabric. The problems of high interconnection density are solved by use of a free-space optical
interconnect that exploits diffractive optical techniques to generate the required interconnection patterns
and weights. © 2000 Optical Society of America
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1. Introduction

Demands on high-performance networks are increas-
ing rapidly with no slow down yet forseeable. Inter-
net traffic alone has been estimated to grow at more
than 30% per month. To operate these networks at
their raw-bandwidth capability requires a new gen-
eration of switches–routers that are capable of sched-
uling the traffic while introducing a minimum of
latency.

At the core of some of the latest generation of in-
ternet routers is a hardware switch that is used to
interconnect the line cards. A central scheduler is
required for selecting a set of packets from the input
queues that can be routed simultaneously to the cor-
rect outputs without blocking. The larger the set
chosen, the greater the throughput, but the decision
must be made within the cycle time of the switch.
This assignment of outputs to inputs that is subject to
constraints imposed by the switching fabric is an ex-
ample of a resource-allocation problem and can be
solved by a simple neural network. We imple-
mented such a network as a parallel optical system
that incorporates a diffractive optical element ~DOE!
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nd measured its performance as a scheduler for both
rossbar and self-routing switching fabrics.

This paper first discusses the general aspects of the
se of optoelectronic neural networks to perform the
bove kind of optimization problem and then focuses
n particular types of network. The actual experi-
ental system is then described in detail, and the

esults presented. The paper concludes with a sec-
ion on performance comparisons and considers the
uture possibilities of such a scheduler.

2. Resource Allocation and Optoelectronic Neural Nets

The preferred approach to network-communication
problems at present is to use arbitrary-topology cell-
based networks such as ATM. These networks have
many advantages over bus- or ring-based systems but
require high-performance switches to be effective.1
Optimizing the throughput for a switch is a compu-
tationally nontrivial problem for which many alter-
native strategies exist. In general, it is necessary to
provide a fast switching fabric with queuing available
at either the inputs or the outputs or both, along with
a control structure for matching the inputs to the
respective outputs. There are evidently complex
trade-offs in terms of performance and hardware
costs for all options, particularly in view of the data-
dependent nature of the problem.

In the implementation described here, we consider
both a crossbar and a multistage self-routing switch-
ing fabric with random-access input queuing. The
novelty in our approach is the use of an optoelectronic
neural network2,3 to perform the input–output
matching. The use of neural-network hardware can
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yield excellent performance on resource-allocation
and optimization problems4–9 at low cost, as it ex-
ploits analog circuit capabilities and, more impor-
tantly, creates a naturally highly parallel approach to
the problem. Such a neural network is, however,
intractable to build to any scalable extent in silicon
because of the high degree of connectivity required.

Our optical scheme enables the deployment of
eural-network technology. Because the goal of this
esearch is to supply high connectivity, we use a free-
pace optical system3 in which a set of emitters is

connected through a diffractive fan-out element to a
set of detectors such that each detector integrates
over the weighted outputs of several emitters. The
system thus exploits several of the degrees of freedom
made available to computation by free-space optics:
the raw bandwidth of a massively parallel intercon-
nection, the nonlocality that can be achieved in such
an interconnection, and the capacity for large fan-out
and fan-in. The system we describe can be reconfig-
ured to solve other nonpolynomial problems such as
route relocation and path determination.4,5,10

3. Winner-Take-All Approach

In our crossbar switch the neurons are arranged in a
two-dimensional array that represents all possible
input-to-output connections such that each neuron
corresponds directly to a cross point on the switch
~Fig. 1!. The neuron outputs can vary continuously
between the OFF and the ON levels. To choose a set of
connections requires that the neurons representing
all the requested connections be enabled simulta-
neously and set to the same intermediate level.
Each neuron has a bias input that tends to increase
its output but also receives inhibitory input from

Fig. 1. Schematic of the experimental neural-network crossbar-
switch controller. On the basis of the connections requested by
the incoming packets the neural network chooses an optimal so-
lution, sets the appropriate crossbar switches ~cross points!, and
hen selects the packets chosen to pass through.
those neurons that represent blocking connections.
Crossbar switches can be blocked at their inputs and
outputs only, so the neurons are arranged to be in-
hibited by others in the same row or column. All
other possible connections are set to zero.

The dynamics of the network resolve the conflicts
between all the mutually excluded neuron pairs,
leaving a valid set of neurons in the ON state and the
remainder in the OFF state. The network thus be-
haves as a winner-take-all ~WTA! system with a par-
icularly simple interconnect pattern—each neuron
ees only its row and column neighbors, each of which
s connected to it by a fixed, inhibitory weight. It is
pparent that such a pattern is space invariant and
herefore highly suitable for implementation in a dif-
ractive optical system. Before we consider our ex-
erimental setup in more detail it is worth
onsidering how other types of switch might be con-
rolled in this way ~particularly with regard to ex-
loiting shift-invariant interconnection patterns!.
Consider the scheduler shown in Fig. 2. In this

ase the incoming packets have a header address that
etermines their paths through the banyan network.
his feature has the advantage that the scheduler
oes not need to set the switches explicitly but merely
o select packets to be launched into the fabric. The
enalty is, of course, that the banyan-type switch
hown here is internally blocking, and a more com-
lex task must be performed by the scheduler. The
eural-network scheduler copes well with this added
omplexity in that the correct functionality can be
ttained by the mere provision of additional inhibi-
ory paths that provide contention between requests
or these blocking configurations. How this inhibi-
ion can be achieved can be seen by the consideration
f the grid of neurons with the left-hand vertical edge
orresponding to the input port of a packet and the

Fig. 2. Schematic of a neural-network controller for a self-routing
multistage banyan switch. Here the neural network selects an
optimal packet solution and notifies the input buffers: It does not
directly control the switching network.
10 February 2000 y Vol. 39, No. 5 y APPLIED OPTICS 789
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lower horizontal edge corresponding to an output
port. Because the destination and the input posi-
tions are known for any packet, the internal blocking
connections are known and can be programmed ex-
plicitly in advance.11 The resultant pattern will per-
form a WTA optimization and allow the switch to
operate.

A novel feature of this study is making these re-
sultant patterns amenable to optics. What is most
important from the perspective of a diffractive optical
implementation is that the final pattern of optics that
is generated be space invariant. The interpretation
of one of the edges of the neuron grid in bit-reversed
addressing order makes the inhibitory interconnec-
tion pattern once more space invariant and suitable.
These patterns are described in the context of the
optical system layout described in Section 4 and in
Ref. 12.

4. Experimental Implementation

The goal of our research was to implement a hard-
ware neural network that was capable of optimally
selecting which data packets should be scheduled to
pass through a switching fabric. The headers ~spec-
fying the desired output port! of queued data packets
ere examined and used to enable a neuron that

orresponds to this connection. The enabled neu-
ons evolve according to a WTA strategy that results
n an allowed pattern of neurons being switched ON

and the remainder OFF. This pattern is then used to
elect a set of winning data packets and to allow them
o pass through the switch fabric. The pattern is
lso used to close the appropriate switch points in the
witching fabric to select the correct path. The com-

Fig. 3. ~a! Electronic neuron block diagram: Each neuron can b
ndicates how a neuron is represented in a modular form. ~b! Ne

highly dependent on b. This diagram shows how the slope chang
90 APPLIED OPTICS y Vol. 39, No. 5 y 10 February 2000
munication pathway is illustrated by the long
medium-broad arrows shown in Figs. 1 and 2. The
64 circles in the array each correspond to a neuron in
the neural network.

The structure and the response of each of the neu-
rons is shown in Fig. 3. In this implementation each
of the 48 neurons has an input detector that is fol-
lowed by a capacitor-coupled inverting amplifier
chain and a low-pass filter; the output drives a
vertical-cavity surface-emitting laser ~VCSEL!.
Our VCSEL array was 8 3 8, but only 48 neurons
ould be used. Thus our switch control was a 6 3 8
ystem.! Figure 3~a! shows the modular electronic
ayout used to generate the required neuron charac-
eristics. Essentially, this arrangement generates
he dynamics and the outputs described by5

dxi

dt
5 IiS 2 lixi 2 (

j50

N21

wij yj 1 tiD , (1)

y(xi) 5 omin 1
omax 2 omin

1 1 exp(bxi)
, (2)

respectively, where x is the state of a particular neu-
ron in time, y is its output, and t is the threshold or
the bias for the neuron. Equations ~1! and ~2! evolve
such that x, the state of the neuron, follows a negative
exponential with the time constant 1yl to reach a
steady state with a well-determined value of y. The
value of l is nominally the same for all neurons. The
weights w represent the optical connections through
the DOE. These weights are also nominally equal
and are determined by the attenuation of the optics.
In this case it is desirable to maximize the weights.

oken down into a series of electronic components. This diagram
sigmoid response: The slope of a neuron’s activation function is
y use of three sample values.
e br
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The time constant and t are set by the resistive and
the capacitive elements, respectively, within the elec-
tronics. The time constant in this implementation is
determined largely by the filter circuits shown in Fig.
3~a!. No attempt was made to optimize for speed
here, but in general one would wish to minimize this
time constant.

The threshold t determines where on the response
curve @Fig. 3~b!# the neuron evolution starts. This

arameter is also nominally the same for all the neu-
ons and is used to set the initial state of the network
n such a way as to optimize convergence. Different
alues of t would be selected for different attenua-

tions w and different values of b. The variable I
takes the values 0 or 1 and determines whether a
given neuron will be allowed to evolve—this process
corresponds to a request for a particular connection.
b determines the slope of the activation function @Fig.
3~b!# and, in practice, is essentially determined by the

Fig. 4. VCSEL’s that are used are highly sensitive to temperature
variations. The VCSEL responses plotted for both high and low
ambient temperatures illustrate just how drastic this variance is.

Fig. 5. Schematic of the experimental optical system setup for the
a single VCSEL is diffracted by the DOE and imaged onto the de
gain of the amplifier in the neuron. The terms omin
and omax merely refer to the minimum and the max-
imum outputs, respectively, of the neuron, which in
this case @Fig. 3~b!# can be seen to be 0 and 1, respec-
ively.

Figure 4 shows the relevant characteristics of the
CSEL’s. The VCSEL’s have typical response times
f 1 to 10 ns and exhibit considerable temperature
ariation. This variation in temperature, both in
bsolute terms and especially in distribution across
he array, generated a source of noise within the
ystem. The consequences of such noise are dis-
ussed in Section 5.

The detector array is a commercial photodiode ar-
ay operated at peak sensitivity with a typical re-
ponse time of approximately 30 ns. Figure 5 shows
he system schematically @two lenses are needed be-
ause the DOE’s operate in the Fourier plane ~see
elow!#. The following describes a typical opera-
ional cycle of the neural-switch scheduler.

Initially all the lasers are set to a fixed output
evel that is slightly higher than the OFF level.

This level sets a stable total power for the array and
effectively biases the neurons toward the ON state.

hen the network is enabled, the lasers of all the
equested neurons are connected to their amplifier
utputs, and the others are set to the OFF level.

Between the laser and the detector arrays are a pair
of lenses and a DOE that divides the light from one
neuron’s laser and focuses it onto the input detec-
tors of the other neurons in the same row and col-
umn ~for a crossbar! or other required pattern but
not to its own input. Because of the inversion in
the amplifier chain, light falling on a detector in-
hibits the neuron, decreasing its output. The WTA
nature of the setup guarantees a convergence to a

sbar-switch controller. This diagram shows how the output from
array.
cros
tector
10 February 2000 y Vol. 39, No. 5 y APPLIED OPTICS 791
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Table 1. Nonuniformity and Efficiency of Crossbar and

7

feasible solution with those neurons that remain ON

determining the allowed routes.
A critical component of this system in terms of

functionality is the DOE. The inhibitory intercon-
nections between the neurons were implemented by
use of far-field scalar DOE’s in conjunction with a
Fourier lens system. These phase-only diffractive
elements were designed by use of a standard iterative
Fourier transform algorithm13 that was followed by a
closed-form iterative technique,14 which was required
to produce the uniformity and the signal-to-noise ra-
tio required of the inhibitory interconnections. The
initial optimizations had a goal efficiency of 60% for a
binary design, but the theoretical nonuniformity DR
f these designs was significantly higher than the

Self-Routing DOE’s

DOE

Initial
Design

Subsequent
Design

h DR h DR

Crossbar 60 4.7 50.0 0.81
Self-routing 60 2.9 49.9 0.83

Fig. 6. ~a! Image of an etched DOE phase pr

Fig. 7. Both the crossbar and the self-routing switches require dif
self-routing switch.
92 APPLIED OPTICS y Vol. 39, No. 5 y 10 February 2000
goal nonuniformity of less than 2% after fabrication.
Reducing the goal efficiency from 60% to 50% led to
the theoretical nonuniformity of each DOE being sub-
stantially reduced, as is shown in Table 1.

The DOE designs are e-beam written on chrome
masks that are transferred to fused-silica substrates
by use of standard photolithographic techniques.
The minimum feature sizes that the in-house facili-
ties at Heriot-Watt University can copy accurately
and etch are of the order of 1–2 mm. The optical
system used in the neural-network demonstrator re-
quired the DOE’s to have a period of 96 mm with
minimum features of ;3 mm.

Figure 6, which contains images of both the e-beam
mask and the etched DOE, shows the rounding of the
sharp edges that is to be expected from feature sizes
that lie so close to the minimum resolvable feature
size. The etching of the DOE onto a fused-silica sub-
strate was performed with CHF3 as the reactive ion
for the etching process. This process produces sharp
vertical etches without undercutting and has an ac-
curacy in etch depth, and correspondingly in phase, of
0.5%–1% over a 25-mm substrate.

A binary design was used for each DOE to mini-
mize the unavoidable fabrication errors caused by

created from ~b! the theoretical phase profile.

t neural-network inhibitory patterns: ~a! crossbar switch and ~b!
ofile
feren
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etch-depth inaccuracies and mask misalignment.
These errors were estimated15 at approximately
1%–2% nonuniformity per mask level, e.g., for a 16-
phase-level design the fabrication errors will result in
a nonuniformity of approximately 4% for a similar
DOE.

The output from the crossbar DOE is shown in Fig.
7. Small zero orders may occur at the centers of the
patterns as a result of the fabrication inaccuracies
observed from Fig. 6. These orders are not critical in
this type of network.

The scheduler was first tested with the crossbar
DOE in position. Six sets of requested neurons that
represented different combinations of waiting pack-
ets were prepared. For each test, the appropriate
neurons were enabled, and Fig. 8 shows typical wave-
forms that were observed at the outputs. Initially,
the outputs were at approximately half the maximum
power, so most of the detectors were receiving large
amounts of light from conflicting neurons. The out-
puts began to turn off at a rate governed by the
low-pass filters. When their inputs were low enough
some neurons were able to turn on again, increasing
the inhibition of those in conflict with them. After
approximately 200 ms all the neurons were clearly
either in the ON state or the OFF state. The validity
of the output states was checked, and the number of
neurons in the ON state, which represents the number
f packets routed through the switch, was counted.
The results for the request sets in which the max-

mum allowable number of neurons in the ON state is
six are shown in the form of a histogram in Fig. 9.
The experiment was repeated with the self-routing
DOE and the same request sets. In some cases the
maximum allowable number of neurons in the ON

state was reduced by the extra blocking mechanisms
in the switch, but those results for which the maxi-
mum was still six are shown in Fig. 10. For con-
structing the histograms, a particular data set was
presented 10,000 times to form a trial, and the num-
ber of times a particular number of packets was
routed out was obtained. ~Initially, trials were per-
formed on noncontentious request sets, and these

Fig. 8. Actual time response of two neurons: One switches itself
OFF, and the other switches itself ON.
were found to work perfectly.! The six request sets
were then produced ~randomly!, and each was pre-
ented 10,000 times to form the six trials shown in
ig. 9. The scheduler never produced an invalid re-
ult. Most times it found an optimal result, except
ith the request sets of trial 3 and trial 4. With

hese trials it usually routed one fewer packet. Thus
he switch would have near-maximum throughput
nd never block. The self-routing scheduler
chieved a better result on trial 4.
No attempt was made to make this demonstration

ystem run rapidly. The decision time was 6 times
he time constant of the low-pass filters ~33 ms!. Re-
ucing this time constant should make it possible to
btain results in tens of nanaoseconds, while still
sing only off-the-shelf electronics, and to achieve
cheduling decisions at a rate compatible with the
atest router requirements.

Fig. 9. Crossbar-switch network convergence: Random-trial re-
quest sequences 1 through 6 were input into the neural network
10,000 times, and the number of neurons in the ON state deter-

ined. A result with six neurons in the ON state indicates an
ptimal solution; fewer neurons indicate that the network has
ailed to converge optimally.

Fig. 10. Self-routing–switch network convergence: Random-
trial request sequences 2 through 4 ~as used in the crossbar switch!
were input into the network 10,000 times, and the output was
observed. Again, six neurons in the ON state indicate an optimal
solution.
10 February 2000 y Vol. 39, No. 5 y APPLIED OPTICS 793
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5. Simulations and Performance Comparisons

Simulations of a 16 3 16 neural-network scheduler
were undertaken to make performance comparisons
with other scheduler designs possible. The simula-
tions were performed under uniform traffic condi-
tions, and the mean delay ~measured in packet
periods! was plotted versus the offered load ~the prob-
ability of a packet arriving at each input!. Figure 11
summarizes the results of this exercise. The upper-
most curve shows the situation in which the inputs
are simply buffered in a first-in–first-out ~FIFO! fash-
ion. FIFO queues suffer from the problem of head-
of-line blocking in that, if the foremost packet in the
queue ~the next one to go! is blocked by another re-
quest, it also blocks all the packets behind it in the
queue even if their destinations are not contentious.
As might be expected, a scheduler based on FIFO
buffering suffers severe performance degradation un-
der an increasing load. The lowest curve ~output
queuing! represents the theoretical best that can be
achieved. This best result is described as output
queuing and is calculated under the assumption of an
ideal switching fabric ~impossible! in which packets
have only to wait for a vacant slot on the output line.
The middle solid curve represents an algorithm
called ISLIP4 ~Ref. 16! that could be implemented in
complementary metal-oxide semiconductor electron-
ics for a high-speed switch of this size. The curve
with the filled circles shows the neural-network
scheduler’s performance and its favorable through-
put at loads as high as and higher than 70%.

It is important to note that the ISLIP4 algorithm
could not be implemented at switch sizes much larger
than those considered because of hardware con-
straints, whereas the neural network is highly scal-
able because of the simple nature of the hardware.
In a practical version of the scheduler, we would not
use discrete electronics but would employ a smart-
pixel array.17,18 Such an array, correctly deployed,
would transfer all the communication complexity to
the optical domain.

No matter how large the switch becomes there is no
increase in the amount of computation that must be
done locally, so convergence time changes essentially

Fig. 11. Comparison of the neural-network controller with a
state-of-the-art scheduler, ISLIP4. The advantage of the neural-
network controller is clearly indicated at high levels of the offered
load. The output-queuing curve indicates a theoretical optimum
value.
94 APPLIED OPTICS y Vol. 39, No. 5 y 10 February 2000
only in terms of the propagation delay of the optical
signals ~which is small! and thus will be similar for
ny desired size of switch. In practice, there will be
hysical limits to the scheduler size. Increasing the
ize of the neural network requires an increase in
OE fan-out: Increasing DOE fan-out decreases

he signal incident upon a detector with a consequent
ecrease in the signal-to-noise ratio. A high fan-out
ill thus bring the signal-to-noise ratio so low that no

ignals can be detected. DOE efficiency is therefore
bound on the achievable switch size.
A possible way of coping with high fan-out is to

onsider using higher-power VCSEL’s—heat dissipa-
ion in the VCSEL array will then bound the switch
ize. The system is also considered to be scalable
ith respect to its high tolerance to noise. Indeed,

he system requires noise to operate. In any
escent-type approach to an optimization problem
e.g., a gradient descent in energy space! there is
lways a risk that the system will become trapped in
local minimum.4 In this system such a local min-

imum may be thought of as a solution that satisfies
the switching constraints ~i.e., it is a valid solution!
but is not a globally optimal solution.

Simulations indicate that the successful conver-
gence to an optimum may be greatly improved by the
addition of noise to the system. The same simula-
tions indicate that the system becomes slow to make
decisions if there is less than 10-pW rms noise-
equivalent power and will begin to make errors at
noise levels higher than 100 nW. In the experimen-
tal system there is sufficient noise present to assist
convergence to the global minimum, as can be seen
from the results shown in Figs. 9 and 10.

6. Discussion

The increased interconnection density, bandwidth,
nonlocality, and fan-out–fan-in offered by optics over
conventional electronic technologies makes it a very
attractive medium in which to implement communi-
cation harnesses for all types of computing engines.
This is especially true for neural networks in which
the demand for communication resources is ex-
tremely high. In this paper, we have described the
successful implementation of a neural network that
exploits an optical interconnect to perform a real
task.

Although in this implementation speed was not a
goal, impressive performance in terms of convergence
and noise tolerance was observed, implying that scal-
ability is good, so large switch sizes could be sched-
uled at little speed cost. It is also the case that, in
terms of speed, the limit in our current implementa-
tion is the high time constant of the low-pass filters
mainly derived from reasons of cost. We estimate
that the network could make decisions in tens of
nanoseconds, while still using discrete components.
A large switch operating at these speeds would far
outperform conventional digital rivals. In addition,
it will be possible to push the speeds up still further
by the removal of the communication delays in the
system with a smart-pixel implementation of the



tigation into the performance of the Hopfield model,” IEEE
electronics. The use of this technology allows us to
envision a miniaturizable scheduler operating on the
principles that have been demonstrated herein.

The elimination of the need for special-purpose
high-speed electronic hardware combined with the
decrease in cost of the optical components as their
communications and computing use increases im-
plies that this system might be a cost-effective solu-
tion to the ever increasing demands on the world’s
communications hardware.
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