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Abstract

This proposal examines implementation methodologies for an optoelectronic
neural network comparing it to current digital, analogue and hybrid systems.
After careful examination of available components, a conclusion is made on
the desired characteristics of any demonstrator as well as the final project
goal.
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2 Proposal Outline

This proposal examines an optical neural network for switching; specifically
the hardware used to simulate neurons and associated price/performance
issues. It presumes familiarity with the subject area as described in [1].

The proposed implementation (figure 1) would fit a processor between
detector and VCSEL arrays to perform the work normally carried out by
another type of hardware system. Various alternative systems have been
considered and thoughts on these systems are outlined in chapter 6.

System Setup

DOE

Lens 1

Object
(VCSEL)

Neural Network

Figure 1

This diagram illustrates how a diffractive optic element (DOE) separates light from a single VCSEL and its consequent imaging onto a detector array.

The complexity in this problem lies in an exponential increase in the number
of additions required to perform interconnection as the network size, mxn,
grows. The very architecture of this system tackles the problem by executing
summation in an analogue manner. Optical interconnects of an appropriate
intensity converge onto a detector associated with each neuron, the output of
which is inherently proportional to the sum of all incident light modified by an
activation function.

The reason that a microprocessor solution was considered at all is because it
offers a flexibility not found in other hardware systems, which will be examined
later. Scalability is also not a serious problem since the number of neural
activation functions to be calculated scales proportionately with number of
neurons in the network, mxn.
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3 Neural System Performance

There are many ways of classifying a neural network: architecture, network
type, number of external inputs and outputs, number of neurons etc. To
evaluate system performance, this proposal will use the Connections-Per-
Second (CPS) rating as defined in 1991 by M. Holler [2]. This rating is really
only applicable in discrete systems.

3.1 Connections-Per-Second

Neural networks consist
of a set of interconnected |

neural processing X, \
\

Neural Processing Element (Neuron)

elements (neurons) which Bias
work by calculating the
sum of a set of inputs x;

multiplied by a set of Output

stored weights w; (see X, » 2 f(x) y
figure 2). This sum is ]
then modified by an L

—
activation function f(x) to yd
give output y. The inputs x /W
to a neuron are known as n
artificial synapses and | Inputs Synaptic ~ Synapse
calculation of the product weights
of one input x; and its Figure 2
synaptic weight Ww; IS  Diagram of an artifcial neuron.
referred to as a
connection. The connection is a basic unit of computation in a neural network
and the number of connections per second (CPS) that it can perform a
measurement of performance. The CPS is directly related to how fast a
network can perform mappings from input to output.

3.2 Neural Network Hardware Review

This section examines existing neural network hardware and reviews their
implementations and performance. Such information is useful in that it sets a
performance target for any system constructed. For further information on
these systems please see [3] or [15].

3.2.1 Analogue Neural Networks

The analogue neural network exploits physical properties to perform
operations and thus obtain high speeds and densities. A common output line
could sum the currents from several synapses to the neuron inputs. The
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major problem though with analogue systems is component tolerances: it can
be very difficult to compensate for variations in manufacturing.

Analogue Network Architecture Neurons | Synapses | Refs. | CPS
Intel ETANN FF, ML 64 10280 [4] 2x10°

Table 1
3.2.2 Digital Neural Networks

A digital network is complete digitalisation of a neural network: the weights are

stored digitally and all calculations are made digitally.

Although digital

summation can be slow, especially with regard to synapses, it is an extremely
flexible and a comparatively mature technology.

Digital Network | Architecture | Neurons | Synapses Refs. CPS
Neuralogix .
oo FF, ML 16 | Off chip [5] 300
HNC 100-NAP | SIMD,FP | 100 PE | ° Czr:fp"ff i 250x10°
" SIVD, 6
Hitachi WSI Hopfiold 576 32K [6] 138x10
Inova N64000 | SIMD, Int. | 64 PE | 128K | [7].[8] | 870x10°
MCE MT19003 | FF, ML 8 Off chip [9] 32x10°
mgm Devices FF, ML 1 PE 8 [10] 8.9x10°
Philips Lneuro-1 | FF. ML | 16 PE 64 [11] 26x10°
Siemens MA-16 | Matrix ops. | 16 PE 256 [12[]1’ H 3L 1 400x10°
Table 2

3.2.3

Hybrid Neural Networks

A hybrid implementation supposedly combines the best of both digital and
analogue techniques: analogue summation and digital noise resistance.

Hybrid Network | Architecture | Neurons | Synapses Refs. CPS

AT&T ANNA FF, ML 16-256 4096 [16] 2.1x10°

;?;”C”e CLNN- | Boltzmann | 32 992 7] | 100x10°

Mesa Research | cp 6 426 [18] 21x10°

Neuroclassifier

Ricoh RN-200 FF, ML 16 256 [19] 3x10”
Table 3
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For this reason, hybrid systems reach the highest performance levels of all
types of hardware implementations: 21x10° CPS having been demonstrated.

3.2.4 Alternative Implementations

It is also possible to implement neural networks using other methods. This
usually involves using a dedicated generic processor (e.g. Transputer, Intel
i860 or DSP) to simulate the network and its interconnects purely in software.
No examples are included here because this proposal is examining a
hardware implementation using optical interconnects rather than a software
one.
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4 Proposed System

This section compares the performance of our proposed system against
existing neural networks by calculating its CPS rating in relation to iteration
frequency and network size.

4.1 Network Connectivity

Presuming there are
enough VCSELs and
detectors available for

Neural Network Connectivity

each neuron, where both 20406 1
arrays are of size m 1.8406 |
inputs by n outputs, we | , "™
have a  connection | £ .
density cq as shown in | g ‘o
equation 1: 8
600000

400000 7

cd:(m+n—2)><m><n 200000 {

ol

Equation 1

60

4
Inputs (m) Outputs (n)

The resulting number of
connections are graphed Figure 3
in figure 3’ ShOWIng that This graph shows how the number of connections grows as the number of inputs and outputs
an increase in network - @reatered

size can increase the number of interconnections drastically.

4.2 Network Performance

Once we know the

number of Neural Network Performance
connections there are
we can work out the
system’s CPS rating s -
by examining its 1.86+14 4

1.66+14
iteration speed. Note ot
that this is not directly | & e
related to solutions Bov1d |
per second as 20412
network convergence 100 1e+08
requires multiple 60 Ge407
iterations. This Network size (n) 7 lterations (Hz)
number of iterations 0"
is believed to be Figure 4
arou nd 50 per It can be seen that the CPS rating increases rapidly with network size n (n inputs and n outputs giving
SOl Ution . If we nxn neurons). This increase is unfortunately only linear when related to iterations per second.
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measure iterations f; in Hz and keep the network (mxn) square (nxn) we can
derive the relationship in equation 2 and figure 4:

CPS =(2n—-2)xn’ x f; Equation 2
Keeping the network size square allows all inputs to be connected to all
outputs simultaneously. If there were more inputs than outputs then a
situation would eventually arise where certain inputs cannot be connected to
any output whatsoever as all existing outputs are busy. Thus a square
crossbar switch is considered to be of optimal design.

4.3 Proposed System Performance

We can therefore determine the performance of our demonstrator using
equation 2. At the present time our demonstrator will be limited to n=8,
however the iteration frequency f; has not been determined. It is hoped that
values of 100kHz up to perhaps 1.2MHz would be possible giving CPS ratings
of 89.6MCPS to 1.08GCPS respectively. Although not as fast as some neural
systems in section 3, it does compare favourably.

What we need to remember is that our neural system design is only partially
interconnected. If we were to replace the DOE with one which connects every
neuron’s output with the input of every other then the network’s CPS rating
would then be determined by equation 3:

CPS=n"x f, Equation 3
This would give a performance of 410MCPS at 100kHz and 4.9GPS at
1.2MHz: pretty high considering there are only 64 neurons. Finding an
application for such a network on the other hand could be awkward.
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5

Available Components

At the current stage of development, there are only two components whose

characteristics are already known:

the detector and VCSEL arrays.

Therefore, any optical system must be designed around these components.

5.1 VCSEL
Array
The VCSEL array

supplied is shown in
detail in figure 5 and
its characteristics in
figures 6, 7 and 8. It
can be seen that the

mean threshold
current is 2.57
+0.05mA, mean
threshold voltage 1.93
+0.01V and mean
optical output power
(@t 8 mA) 1.25

+0.02mW. The power
conversion efficiency
at 8 mAis 6.3 £0.1%.

The emission
wavelength  for this
array is ~956 nm with
a maximum variation

Magnified

VCSEL
contact

Interconnect

VCSEL array photograph
S

Spacing: 250pm

Substrate (GaAs)

Figure 5

VCSEL array was originally fabricated by CSEM as a SPOEC demonstrator.

across the array of Almax=0.25nm. This value has been determined by
individual operation of each VCSEL at 8mA. The emission wavelength

VCSEL Threshold Current

30

20 +

10 A

Number of occurrences

0 -
20 22 24 26 238 3.0

Current (mA)

l =2.57 £0.05mA

th (mean}

VCSEL Threshold Voltage Optical Output Power
30 40
7] (7]
8 ]
c <
I L 301
5 204 5
8 8
:
g 101 5
£ £ 104
> 3
4 4
0 o 0 -
1.90 1.95 2.00 10 11 12 13 14
Voltage (V) Power (mW)
Vi mean =1-93 20.01V mean Pyt mean =1.31 £0.01TMW at I=8mA

Figure 6

The above values demonstrate how similar all VCSELs in the array are. Such an array reduces the amount of calibration which needs to be done and

thus system complexity.

10
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VCSEL Emission Wavelength VCSEL Characteristics
= 957 =
£ - :
£ 956 S <
s o
> ) 2
8 955 = &
o ) -
5 - S
= 954 =
o
7 8 ' ' '
7 3 45 6 0 5 10 15 20
8 1 2 Current (mA)

Figure 7 Figure 8

Emission wavelength distribution at a constant drive current
1=8mA. Maximum wavelength deviation Akma=0.25nm.

VCSEL optical output power and voltage drop in relation to current.

variation when VCSELSs are operated simultaneously can only be determined
later, however preliminary experiments with a comparable array (AAmax=0.8nm
for individual VCSEL operation) has shown that this additional wavelength
variation is relatively small: AAmax=1.1nm.

The bias free modulation response of individual array VCSELs can reach data
rates of 250MBit/s NRZ with a 1.6ns turn-on delay. Adding a bias of 1.9V
reduces the turn-on delay to 0.9ns thus reaching data rates of 500MBit/s with

ease.

For further information on the VCSEL array please see [20].

5.2 Detector Array

Two types of detector array
were considered for this
project: a CCD array and a
Photodiode detector array.

Using a CCD array would have
given a much higher resolution

than a photodiode array
perhaps allowing intelligent
alignment using signal
processing. However, the

disadvantages of CCDs in this
implementation proved to be
far too restrictive: a shutter is
required and serial data output
from the chip gave frame rates

of between 10-15Hz (using an inexpensive array).

Photodiode
Detector Array

10x10 Centronic
MD100-5T

pal ---- Spacing: 1.5mm
pams l

Magnified

Photodiode
element

1.4mm

-- -- - <——— Substrate (Si)

Figure 9

The above photodiode detector array is to be used in the current project.

Pixel bining would have

improved the frame rate but it is inflexible and enabled chips are expensive

(~£15,000).

11
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The photodiode detector array shown in figure 9 (Centronic 10x10 element 5T
photodiode array) was chosen because it could not only support high data
rates (~26ns response) but all elements could be read out simultaneously.

5T Photodiode Typical Detector Package Dimensions mm (inches)
Spectral Response 840231 MAX
I 48.8(1.92) |
0.7 : : : : : : : : : 44:—0.5(0.02))‘39 ‘
0.6 - 0V Bias
: S TUIITT —
0.5 e
< RNz i
=3 [ O S S AU s R O ; 0(2.13) .8 (1. 0 (3:
b 04 : : : ‘ : : : 54.0 (2.13) 48.8(1.92)  84.0 (3.31) MAX
> VS ‘
g 0.3 i [ R e
; BV EEEEE e
® e M-
: : : : : : : : : WINDOW
; ; ; ; ; ; i i i 25.4(1.00) DIA. Pa—yTYO
011 e SRS RO SO SO e R W 540 (2.13)
| 49.2 (1.93) DIA. | 6.00(0:236) (zfg(ggﬁ)om
0.0 +—T—T—TT—T T N , 0
200 400 600 800 1000 1200 T T
Wavelength (nm) 1.7 (0.067) NOM.
(TO CELL)
Figure 10 Figure 11
The wavelength at which the system operates is clearly marked in red. The photodiode detector array is placed in the central window. Admittedly,

the array is fairly large in comparison to the VCSEL array.

Figures 10 and 11 provide further information on frequency response and
packaging of the array respectively. Table 4 examines the detector array in
more detail.

m > r (7 = Al - Al = 0O = 0 =0 =0 =0, -1 W0
) 8 § 2 s |5 @38 3 @38 5 8| g 8 8| 88| 52| 52
3 o = Q o §F 8| g e8| * x| 7 X "9 ] 3 E
2 | 3 5| 5|2 882 g8 o gl e% eE| 53| 53
S 3 3 3 2 3 Sa S0 < s o8 g &7 Q5
~ | 3 3 S 32 32 3 3| <3| N2 | 28| 24

3 g g 2 2| 8| 58| %@ | 3@

3 3 3 a%| 2% 33| 33

s § 3 3 RIS R

10x10 | 196 | 1.4 | 14 | 0.1 0.31 0.36 200 1 55 12 1 400
Table 4

5.3 Optics

Although this proposal does not consider the optical system in detail, the
following two points must be kept in mind

e Due to VCSEL choice, the optical system must be designed for 956nm
with AR coatings at this wavelength

e Size is a very important consideration: the smaller the better. System size
is directly related to DOE working distance and thus it must converge as
acutely as possible.

12
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6 Neural Network Implementation

Since we already have a predefined optical solution (figure 1), the only aspect
which remains unspecified is the neural network. This section compares and
contrasts analogue and digital solutions.

6.1 Analogue Neural Networks

Implementing an analogue solution would mean that the entire system would
be classified as an analogue one. The simplest (and cheapest) solution would
be to use an operational amplifier which would act as the neurons as
described in [1]. Flexibility could also be added by using components such as
an EPAC (Electrically Programmable Analogue Circuit) from ITC or FIPSOC
(Field Programmable System On Chip).

6.1.1 Advantages

e The component densities of most analogue systems are higher than that of
digital.

¢ Analogue systems can be very fast.
e Costis very low.
e Easily integrated into any smart pixel implementation.

6.1.2 Disadvantages

e Component tolerances become critical and indeed have already been a
problem in a previous system [1].

e Inflexible. Once designed and built it becomes hard to alter any
parameters. This problem could perhaps be circumnavigated by using
programmable analogue circuitry.

¢ Network convergence is highly dependent on components used.
e Tricky to design correctly.

e Signal-to-noise ratio can be low.

6.2 Digital Neural Network

Since there is already an analogue component in the system (weight
summation), adding any digital hardware would change the system’s
classification to hybrid. Although integrating digital components may sound
out of place, | believe that the benefits it will bring far outweigh the drawbacks.
Unfortunately, the problem with any digital neural implementation is
conversion from analogue to digital at the input and digital to analogue at the
output. This can not only be slow (1.2MHz ADC, 100kHz DAC) but very

13
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costly. After careful consideration, | believe that some sort of microprocessor
solution is very promising.

| do not believe that an FPGA or a digital building block solution is feasible nor
sensible since such a system would be as complicated as any analogue
implementation if not more so without custom chip design. Any advantages
which may have been gained from analogue to digital conversion will
therefore be negated and it would be more pertinent and cost efficient to have
designed in analogue from the start.

The points made below in both sub-sections 6.2.1 and 6.2.2 thus argue for
and against a microprocessor system.

6.2.1 Microprocessor Advantages

e Simplicity. Microprocessor systems are (usually) a plug-in solution so
electronic design will be kept to a minimum.

e Flexibility. The neuron activation function f(x) can be reconfigured to
anything that can be calculated on a processor.

e Lookup tables can be used for system calibration. A CPU can adjust
VCSEL output until it reaches predefined levels on the photodiodes. This
can also prevent saturation of the photodiodes; a sort of active calibration.

e Alignment can be made active as a microprocessor can examine light
intensities falling on individual detectors to ensure light is only reaching the
correct ones. The system is no longer ‘dumb’.

e Can rapidly simulate failed neurons and the effects they would have on the
system.

e Workload can be divided across multiple processors allowing easy scaling:
fortunately the number of calculations per iteration is directly proportional
to the number of neurons thus workload does not increase exponentially.

e A microprocessor can judge when the network has converged so any
result can be output when the system is finished and not after a predefined
time period.

e Proof of principle. A microprocessor could be given measured
characteristics from another proposed implementation and replicate them
for evaluation purposes: e.g. a proposed analogue implementation.

6.2.2 Microprocessor Disadvantages

e Expensive. Cost is, however, highly dependent on whether it is a turnkey
system (£4,000+) or a system built around embedded microcontrollers
(from £15+ each).

e DAC can be slow without expensive hardware.
e Overall system could be quite large.

e Any proof of principle is only as good as the model used presuming digital
is not going to be the final implementation.

14
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e Just a hardware implementation of the simulation (is that really a
disadvantage?).

e Multiple processors required to prevent bottlenecking.

6.3 Component Interfacing

There are three interfacing problems which need to be carefully considered
regardless of system design.

6.3.1 Detector to Neural Network

If an analogue neural network is implemented then this is not an issue.
However, if a it is digital than D/A conversion over 64 channels will be
required. This could also be performed using multiplexing of components but
results in serial processing of parallel data.

6.3.2 PC to Neural Network

Presuming that the system to be built will support more than active/inactive
inputs, an analogue neural network requires digital to analogue conversion
from PC (or any other computer) to network (perhaps vice versa for return -
system dependent). A digital network would minimise this problem with some
microprocessors capable of direct connection to a PC com port (no extra
hardware necessary).

6.3.3 Neural Network to VCSEL

64 VCSELs need to be driven by the neural network. An analogue network
would not prove difficult to interface but, again, a digital network would. Digital
to analogue conversion would clearly be required which is not only slow and
expensive but could result in the multiplexing of several channels.

15
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7 Conclusion

The ultimate goal of this project is to create a flip chip bonded solution which
contains VCSEL array, neuron electronics and detector array in a folded
system as shown in figure 12.

Smart pixel containing
Folded sy5tem detectors, neural network
(Project Goal) and flip chiped VCSELs
Lens 2 N
o
Mirror 2 ; 3y
N
Nl
"
DOE
‘LL{‘:
Lens 1
Mirror 1

Figure 12

This folded system has detectors, neurons and VCSELs all fabricated on one component. The lens system still remains the crucial size limiting factor: just
how far it can be miniaturised still remains unclear, but it appears to be highly dependent on DOE working distance.

The real deciding factor here is cost. A microprocessor solution is
undoubtedly far quicker to implement, a lot more flexible and perfectly placed
to examine system nuances, however cost weighs heavily against it.
Fortunately, it also has the advantage of reusability: any system which can
sample 64 analogue inputs and output 64 analogue voltage levels after signal
processing is universally useful, especially with the attached signal processing
capabilities.

| believe that implementing a simple analogue solution at this stage would be
taking a leap towards a project goal without necessarily understanding it
completely. Since we are designing a demonstrator, flexibility is of ultimate
importance: the flexibility to alter network configuration, activation functions
and compensate for component tolerances. During writing, an analogue
demonstrator was completed at BT Labs so | can only conclude that we either
examine a discrete solution using microprocessor hardware or tweak the
original (using programmable analogue chips rather than op-amps) to
additionally support analogue input values.

16
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8 Glossary

ADC
AR

BP
cCD
CPS
CSEM
DAC
DOE
DSP
EPAC
FIPSOC
FF

FP
FPGA
ML
NRZ
PE
SIMD
SPOEC
VCSEL

Analogue to Digital Conversion

Anti Reflective

Back Propagation

Charge Coupled Device
Connections-Per-Second

Centre Suisse d’Electronique et de Microtechnique
Digital to Analogue Conversion

Diffractive Optic Element

Digital Signal Processor

Electrically Programmable Analogue Circuit
Field Programmable System On Chip

Feed Forward

Floating Point

Fully Programmable Gate Array

Maximum Likelihood

Non-Return to Zero

Processing Elements

Single Instruction, Multiple Data

Smart Pixel Optoelectronic Connections
Vertical Cavity Surface Emitting Laser

17
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