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Abstract 
Current software systems suffer from an exponential increase in 
computational complexity when solving a quadratic assignment problem.  
Such problems exist in today’s telecommunication systems as a network tries 
to rout calls optimally through its switches to minimise blocking.  This project 
considers the problem and proceeds to propose a solution using the inherent 
parallelism of a neural network to reduce computation times.  In conclusion, a 
hardware implementation is examined which uses free space optical 
interconnects to reduce circuit complexity and its performance is closely 
scrutinised. 
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22..11  TThhee  AAssssiiggnnmmeenntt  PPrroobblleemm  

As the complexity of modern communications and computational systems 
increases so does the need to develop new techniques which deal with 
common assignment problems ([6] and [7]) in situations such as: 

�� Network and service management. 

�� Distributed computer systems. 

�� Work Management systems. 

�� General scheduling, control or resource allocation problems. 
The common assignment problem is essentially optimising task allocation to 
all available resources thus maximising throughput.  In a distributed computer 
system this results in a many process computation being finished in the 
shortest possible time whereas, in a network management system, packets 
are routed to optimise throughput and minimise blocking. 
This report examines specifically the assignment problem in a crossbar switch 
for packet routing [11].  These switches are present in many 
telecommunication systems and computer networks, one good example being 
ATM (Asynchronous Transfer Mode) networks. 

22..22  NNeeuurraall  NNeettwwoorrkk  IImmpplleemmeennttaattiioonn  

The problem of packet routing in crossbar switches is known to be analogous 
to the travelling salesman problem (TSP).  The TSP problem is a renowned 
NP complete problem [22] which means that although it can be solved by 
linear programming techniques, such as the Murnkes algorithm [23], it is 
computationally intensive and complexity grows exponentially as its order 
increases.  Thus, a simple single processor solution will not provide 
satisfactory scalability. 
One alternative is to apply a neural network to the TSP problem [8], [9].  The 
advantage of a neural net lies in the speed obtained through its inherent 
parallel operation, especially when dealing with large problems.  Such an 
implementation will easily outperform any other method at higher orders of 
network size ([1], [4], [5], [6], [10], [14] and [16]) providing a very good, but not 
optimal, solution.  It has been shown [6] that, at lower orders of network size, 
the average solution is within 3% of optimal.  However, as the network size 
grows this figure improves slowly and begins to approach the optimal solution. 
The problem which remains with any neural network solution is its adaptation 
to act as a controller for the crossbar switch. 

22  IInnttrroodduuccttiioonn  
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22..33  IImmpplleemmeennttaattiioonn  OOvveerrvviieeww  

Figure 1 shows a high level 
overview of the system.  Each 
neuron in the Hopfield network 
controls a single crosspoint 
switch.  Collectively, the neural 
network examines all incoming 
packet buffers and, based on 
the packets’ requested output 
connections, chooses an 
optimal combination of packets 
to throughput.  The neural 
network considers any output 
to be optimal if it maximises the 
crossbar switch’s usage.  All 
appropriate connections are 
then made by setting their 
crosspoints on the crossbar 
switch.  This allows the selected packets to be routed through the switch. 
Neural networks use simple processing elements where communication 
between processors is an integral part of their design.  This leads to a highly 
interconnected system and typically a fabrication layout nightmare at higher 
orders: where neural network control really proves itself. 

Therefore, this project proposes optical 
interconnection of neurons ([17], [18], [21], [28], [33] 
and [34]).  Light has the property that it is non-
interacting in free space and therefore the 
interconnects can effectively cross each other 
(figure 2 and [25]).  Since the interconnects can 
then be more direct, not only is the amount of 
routing reduced but signal skew becomes less of a 
problem. 
 

22..44  RReeppoorrtt  OOuuttlliinnee  

The objective of this report is to present a modified Hopfield neural network as 
an implementation method for throughput optimisation in crossbar switches. 
The report is divided into 2 main chapters.  The first chapter is dedicated to 
theory while the second to procedure and results.  This report also includes 
extensive appendices which will be referred to throughout the text. 

 

Neural Network Crossbar Switch Controller

Request
connections

Hopfield network

Set crosspoints

n OutputsBuffers

Incoming
packets

n
Inputs

Select
packets

nxn
crossbar
switch

Neurons

Figure 1
The proposed system uses a Hopfield neural network to examine all incoming packet 
buffers and rout packets through the crossbar switch in an optimal manner. 

The Physics of Photonics

Electrons Photons

No InteractionCoulomb
Interaction

Figure 2
Photons have the advantage of being
non-interacting in free space. 
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33..11  CCrroossssbbaarr  SSwwiittcchheess  aanndd  NNoottaattiioonn  

A crossbar switch can be simply abstracted as a set of N inputs and N outputs 
where each input can be switched to any output. 
An example of this can 
be seen in figure 3 
where, by simply closing 
the correct crosspoint 
switch, any input line 
may be connected to 
any output line.  This 
system has the limitation 
that it is mutually 
exclusive: any input or 
output lines that are in 
use cannot be reused.  
Thus, two incoming 
requests for the same 
output line will result in 
one becoming blocked 
regardless of the routing algorithm which is used. 
To clarify the notation 
used throughout the rest 
of the report, please 
examine figure 4.  This 
diagram details how a 
matrix may be mapped 
onto the crossbar 
switch, each crosspoint 
having a corresponding 
matrix element.  A 
specific element in any 
matrix y can therefore 
be referenced using yij, 
where i is the input line 
and j the output line.  
Every element in the 
matrix can take on one of two values: 1 when there is a connection (or 
connection request) or 0 otherwise.  The value and legality of the matrix is 
dependent on situation.  Please examine the matrices shown in equations 1 
and 2. 

33  TThheeoorryy  

Figure 3
An NxN crossbar switch is shown here at various levels of detail. 
(a) Shows an overall connection diagram for a typical crossbar switch. 
(b) Details how each of the crosspoint switches work. 
(c) Depicts a high level schematic of a crossbar switch. 

n Output Lines

n 
In

pu
t L

in
es

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

(a) nxn Crossbar Switch (b) Crosspoint Switch

(c) Schematic Representation

n
Input
Lines

n
Output
Lines

nxn

Matrix Representation of a Crossbar Switch

Rows: i

Columns: j

n
Input
Lines

n Output Lines

1 1
n

n

Figure 4
This diagram shows how a matrix can be mapped onto the crossbar switch thus aiding 
representation. 
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These matrices represent the crossbar switch in figure 4 but from different 
points of view.  Equation 1 represents a set of desired connections where 
three input lines have requested connection to two different output lines: one 
request is obviously going to have to wait.  Such a matrix is legal regardless of 
the combination of zeroes and ones.   Equation 2 shows a sample response.  
One request has been discarded in favour of another since only one input line 
can be connected to one output line at a time.  A response is considered to be 
legal if there are no other closed switches on the same lines, i.e. all other 
elements in the same row and column as the active element must be zero. 
The real optimisation problem comes in when you start to consider a system 
which has buffered input (as shown in figure 1).  In such systems there can be 
multiple packets waiting on a 
single input line for various output 
lines, as can be seen in equation 
3. Requests for multiple 
connections can be seen in the 
left matrix and the only optimal 
solution which maximises 
throughput on the right.  This 
request matrix proves useful for 
testing crossbar control systems. 
As an enhancement to packet 
systems, each element could be 
converted to an integer value representing the number of packets waiting on 
each connection.  This is, however, not within the scope of this report. 
Note that although this description limits itself to square switches with the 
same number of inputs as outputs, it is possible to have different numbers of 
inputs and outputs.  The system built and described in this report has in fact 6 
inputs and 8 outputs. 

33..22  TThhee  HHooppffiieelldd  NNeeuurraall  NNeettwwoorrkk  

The key to utilising the parallelism of a neural network is matching the network 
as closely as possible to the problem.  This section explains the theory behind 
the modified Hopfield neural network used in this project but does not give a 
generalised description due to space constraints.  For more information 
please refer to references [12], [29], [30], [31], [32] or [35]. 

Equation 1
This matrix shows a set of requested connections.  Input i=1 has 
requested a connection with output j=3 and both inputs i=2 and i=3 
have requested a connection to output j=4. 

Equation 2
This matrix shows a solution or response to the request in equation 
1.  It is legal because there are no other connections on the input 
rows and output columns which have been selected. 
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The left matrix shows a request and the right the only optimal response.  This 
matrix is useful for testing a system. 
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33..22..11  TThhee  NNeeuurroonn  oorr  NNooddee  
A Hopfield neural network consists of 
a large number of processing 
elements called neurons (see figure 5 
or references [13] and [35]) which are 
highly interconnected to each other in 
a specific fashion.  Neurons are the 
basic building blocks of neural 
networks and are an approximation of 
the neuron found in nature.  A neuron 
takes inputs from other neurons’ 
outputs yij (referenced by ij) and 
multiplies their strengths by a scalar 
weight Wij known as the synaptic 
weight. 
All inputs are summed by the neuron 
along with a specific bias to find xij.  
The neuron’s output yij can then be 
determined using a monotonic 
activation function f(xij), as shown in 
equation 4.  Here � is used to control 
the gain of the sigmoid function, a 
higher value resulting in a steeper 
transition (as can be seen in figure 6). 

The exact form of f(xij) is not 
particularly important and in fact any 
appropriate non-linear monotonically 
increasing function could be used.  The 
preferred embodiment is, however, the 
sigmoid function. 

33..22..22  TThhee  UUppddaattiinngg  RRuullee  
Adapting a neural network to any problem requires that an updating rule is 
defined and thereby the network interconnection structure.  The updating rule 
determines the next value that a neuron will take with respect to time based 
upon the previous outputs of other neurons, as shown in equation 5: 

where: 

xij: is a summation of all inputs to the neuron referenced by ij including the 
bias. 
yij: is the output of a neuron referenced by ij. 
A: Optimisation value weighting the input from any element in the same 
column. 

Optical System

–A 

Neuron Block Diagram

–A  

Figure 5
The building block of any neural network: the neuron. 

Optical Alignment Setup

Equation 5

Equation 4

Figure 6
Sigmoid activation function of a neuron as in equation 4. 

 

Neuron Circuit Diagram
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B: Optimisation value weighting the input from any element in the same row. 

C: Optimisation value representing external bias supplied to each neuron. 

and xij is related to yij using equation 4. 
To illustrate this rule further, 
figure 7 shows an 
interconnection diagram for the 
modified system.  Here the 
neuron marked with output yij 
has inputs from all the other 
neurons in the same row -B.y2j 
and column -A.yi2.  The 
important point to note here is 
that the neural network works in 
an inhibitory fashion so any 
active input will inhibit yij.  C/2 
describes the external bias 
supplied to each neuron which 
is not inhibitory. 
The idea behind this 
interconnection strategy is that 

any active neuron will try and turn all the others off, eventually resulting in only 
one of the requests remaining active in each row and column.  However, to 
demonstrate its ability to find an optimal solution, the example in figure 7 
needs to be extended slightly, as in equation 6.  The left matrix here 

represents a request and the right its 
best case solution with y22 switched off.  
Careful consideration leads us to 
conclude that the network must converge 
to the solution shown here since both y24 
and y42 are inhibiting y22, thus resulting in 
it being switched off before the others 
and essentially losing.  If y22 had won in 
this case then it would have resulted in a 
poor solution since y24 and y42 would be 

off: obviously not maximising potential throughput. 
It has been shown by Hopfield that with symmetric connections and a 
monotonically increasing activation function f(x), the dynamical system 
described by the neural network possesses a Lyapunov (energy) function 
which continually decreases with time. The existence of such a function 
guarantees that the system converges towards equilibrium which is often 
referred to as a ‘point attractor’. 

The ‘optimisation parameters’ A, B and C [15] have been determined purely 
by trial and error in previous work [24].  If these parameters are not chosen 
carefully then equation 5 will converge either very slowly or not at all.  A 
further possibility is that the system might converge to an invalid solution. 

Misaligned DOE

Figure 7

Optical Setup

Equation 6
The left matrix is a request and the right its solution. 
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33..22..33  DDeetteerrmmiinnaattiioonn  ooff  OOppttiimmiissaattiioonn  PPaarraammeetteerrss  
It is possible to determine the optimisation 
parameters by a more methodical method than 
simply trial and error.  A solution for equation 5 
can be found when the system is under conditions of equilibrium, as shown in 
equation 7.  This results in equation 8. 

where x0,ij is the value xij at equilibrium. 
Further restricting the parameters, we know that in the final solution to the 
switching problem each neuron will settle to either zero or one.  Presuming 
that a valid solution has been found then there should be at most one active 
neuron per row and column.  This information allows us to establish that, if ij 
is a is a zero position, the equilibrium condition 
reads as in equation 9, where x1 denotes the 
first equilibrium solution. 

However, we also know that since we are at equilibrium, the associated y 
value must be close to zero and that y tends towards zero as x tends towards 
minus infinity (equation 4).  Accordingly, we can rewrite equation 9 as the 
inequality shown in equation 10:  This solution is referred to as the ‘negative 
attractor’.  There must be n2-n positions in 
the network satisfying this condition, 
presuming a square matrix of n2. 

The next consideration must be the ij positions which are tending towards 
one.  In equilibrium, the condition then becomes 
that shown in equation 11, where x2 represents the 
second equilibrium solution. 

Again using equation 4, it can be easily seen that y tends to one as x tends to 
infinity.  This allows us to rewrite equation 11 as the 
inequality in equation 12 or ‘positive attractor’.  This 
condition will have to be satisfied at n positions in 
the network. 

The final equilibrium conditions mean that n neurons in the network have 
converged to one of the two attractors and n2-n neurons have 
converged to the other.  Combining 
equations 10 and 12 gives the overall 
inequality in equation 13. 
This equation can be refined since a symmetric 
matrix is desired (i.e. A=B), as shown in 
equation 14. 

33..22..44  LLooccaall  MMiinniimmaa  
In any system with a continually reducing energy function, there is always a 
risk that the system will become trapped in a local minima.  In this system, a 

Aligned System
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local minima can be represented as a solution which satisfies the switching 
constraints but is not a global optimal solution.  The best way round this 
problem is to introduce noise into the system by varying �, as shown in figure 
6, between 0.08 and 0.16.  This alteration in the activation curve’s gradient is 
significant enough to provide successful convergence to a global minimum 
during network simulation. 
Note that this strategy is not used in the actual system since there is enough 
background noise in any real system to make this variation unnecessary. 

33..33  SSyysstteemm  DDeessiiggnn  

This implementation of a neural network uses optics to interconnect all the 
neurons in a configuration as described in section 3.2.  This method has the 
advantage that a large and complicated interconnect pattern can be realised 
with ease. 

The optical setup, as illustrated in 
figure 8, uses a detector as an 
input to each electrical neuron and 
a vertical cavity surface emitting 
laser (VCSEL) as output.  As a 
neuron turns on, so does the 
appropriate VCSEL.  The task of 
the diffractive optic element (DOE) 
is to disperse the power from an 
active VCSEL so that light is 
directed onto the detectors of 
neurons in the same row and 
column [26], [27].  Any light incident 
on a detector acts in an inhibitory 
manner causing the associated 
neuron to turn off: the higher the 
light intensity, the more likely it is 
that a neuron will turn off.  Note 
that the VCSEL array is turned 
through 180� in relation to the 

detectors.  This setup does unfortunately have two major sources of inherent 
errors. 
The first problem is the VCSELs.  This system is designed so that the output 
from each neuron has an equal weight i.e. the output light intensity should be 
equal for all lasers.  This is obviously not the case with a VCSEL array as it is 
almost impossible to fabricate every VCSEL with the exact same output 
characteristics.  It is, therefore, necessary to calibrate each VCSEL so that the 
power output for on and off are the same: both of which must lie above 
threshold. 
The second is optical alignment.  The system needs to be aligned in such a 
way that the output from each VCSEL reaches only the correct detector(s).  
This involves careful alignment of both VCSEL and detector arrays as well as 
any associated lens system. 

Optical System

Figure 8
Each neuron has an associated detector and VCSEL which act as input and
output respectively.  The DOE divides any output light from a neuron’s
VCSEL to the adjacent neurons’ detectors as indicated above. 
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Discrete electronics were used to implement each neuron.  Figure 9 shows a 
block diagram representation of the electronic system, whereas figure 10 
shows a circuit diagram. 

These electronics were divided up over a series of different circuit board 
modules, each of which will be described later in this report. 

–A 

Neuron Block Diagram

–A  

Figure 9
Block diagram schematic of the implementation of each neuron.  Various reference points are marked and will be referred to later on in this report. 

 

Neuron Circuit Diagram

 

 

 

Figure 10
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44..11  NNeettwwoorrkk  SSiimmuullaattiioonn  

The first aspect of the project examined was simulation of the perfect 
theoretical case.  A pure theoretical model was available as Matlab source 
code and is included in Appendix A.  Theoretical examination was undertaken 
to determine the significance of each of the optimisation parameters shown in 
section 3.2 as well as the neuron’s activation function.  The following points 
were determined from both papers and examination of the model: 

�� Noise plays a very significant role in this model.  As the noise level 
increases, the time taken for network stabilisation decreases.  However, 
when the noise value reaches unity the network becomes unstable and 
does not provide a valid or steady solution. 

�� Network size plays an important role in convergence to a solution: the 
larger it is, the longer it takes to converge. 

�� The value of � should lie within the region 0.08 to 0.16 for optimal 
performance. 

�� � is effectively linked to C as in equation 15. 

�� C should remain within the limits 40 to 150 for optimal operation. 

�� Increasing the value of C encourages the neurons to choose quickly. 

�� A=B (presuming a symmetric matrix) should be at least ten times greater 
than C. 

The preferred values used during simulation were A=B=1250, C=100 and 
therefore, from equation 15, �=0.02 (slightly outwith optimum). 
Simulation was also performed of a more realistic model based on figure 9 to 
analyse the system when implemented in the proposed manner.  The Matlab 
code for this can be found in Appendix B. 
Both models performed as predicted in the patent application [2] on close 
examination. 

44..22  OOppttiiccaall  AAlliiggnnmmeenntt  

This system relies heavily on the properties of a diffractive optic element 
(DOE [19]) to split up incoming light and cast it onto the appropriate detectors 
as shown in figure 8.  For optimal results from the DOE, incoming light must 
be nearly collimated.  However, the VCSEL array outputs light with a 
divergence of approximately 8� thus requiring slight focussing.  In addition, a 
magnification of 6x must be present if 250µm spaced VCSELs are to be 
focussed onto 1.5mm spaced detectors.  It becomes obvious at this point that 

44  PPrroocceedduurree  aanndd  RReessuullttss  

2. �C� Equation 15
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a lens system is required to perform collimation and subsequent 
magnification. 
Figure 11 shows the 
system setup as 
previously proposed in 
reference [20]. 
A DOE element fitting 
system specifications 
was received at the 
beginning of this 
project.  It was 
inserted into the 

system and its output examined by projection onto a 
grid which was the same size as the detector array.  
The image projected onto the image plane was not as 
expected and is shown in figure 12.  It can be easily 
seen here that the projected crosses from the test 
VCSELs do not fit correctly between the grid lines.  
Each element in the system was then carefully 
examined in an effort to find any problematic 
components and eliminate any errors they are be 
introducing: 

�� VCSEL:  Moving the VCSEL in relation to Lens 1 
alters focussing on the image plane.  For a sharp 
image there is only one position for the VCSEL – 
at Lens 1’s focal point. 

�� Lens 1:  Should really only have one position: focussed on the VCSEL 
array. 

�� DOE:  The position was found to be extremely sensitive to change.  
Movement away from Lens 1 results in an increase in the number of 
orders visible between two laser positions: towards and the number of 
orders decreases. 

�� Lens 2:  Focuses at a specific distance to give the image plane.  
Movement in relation to Lens 1 allows the size of the image on the output 
plane to be altered. 

The only component sensitive to a change in position was found to be the 
DOE.  The DOE’s position was varied between Lens 1 and Lens 2 to try and 
find a point at which the image was projected correctly but there was none.  
The DOE was then removed from the system and its characteristics examined 
more closely.  It suddenly became apparent that the DOE’s working distance 
was not the same as that used in [20].  The working distance is the distance at 
which the DOE correctly projects the desired image and an incorrect value 
would explain the problems seen in figure 12.  The working distance therefore 
had to be re-measured and turned out to be 187mm rather than one of the two 
pre-calculated values. 

Optical Alignment Setup

Figure 11
Optical system as proposed by previous calculations in reference [20].  Drawing not to scale. 

Misaligned DOE

Figure 12
Crosses output from 4 VCSELs should
overlap perfectly with spots lying
between the grid lines. 
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44..33  RReevviisseedd  LLeennss  MMooddeell  

The calculations made in reference [20] for initial system design were based 
around a DOE that had a working distance of exactly either 120mm or 
230mm.  Since the DOE supplied had a different working distance, it was 
necessary to redesign the optical system. The lens system was remodelled 
using Matlab V4.2.1c (code in Appendix C) with the previous work as a basis. 
Figure 13 shows a drawing of the system setup.  This section details the 
formulae used to calculate an optimal system setup, however the origins of 
each equation are not detailed because of resultant complexity. 

44..33..11  KKnnoowwnn  PPaarraammeetteerrss  
The first task was to determine all known parameters.  Using these as a basis, 
the system can then be further characterised: 

f1: Focal length of Lens 1 (mm). 
f2: Focal length of Lens 2 (mm). 
d1: Diameter of Lens 1 (mm). 
d2: Diameter of Lens 2 (mm). 
L: Working distance of DOE (mm). 
g: Separation of Lens 1 and Lens 2 (mm). 
d: Displacement between 1st and 2nd orders  (mm). 
M: Magnification desired for entire system (usually negative). 
ddoe: Diameter of the DOE (mm). 
vsize: VCSEL size (square) (mm). 
vnx: Number of VCSELs in array x direction. 
vny: Number of VCSELs in array y direction. 
�: Divergence in radians. 
�div: Divergence in radians of beam between Lens 1 and Lens 2. 
Tf1: Lens tolerance of f1 against u1 (percent). 

Optical Setup

Figure 13
Basic optical design of lens system.  All values in this diagram can be calculated given certain known values and simple lens formulae. 
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44..33..22  uu11::  DDiissttaannccee  bbeettwweeeenn  VVCCSSEELL  aarrrraayy  aanndd  LLEENNSS  11  
u1 can be determined using the formula 
in equation 16.  This value should 
essentially be around the same size as 
the focal length of Lens 1. 

44..33..33  vv22::  LLeennss  22  ttoo  IImmaaggee  PPllaannee  
To find the distance between Lens 2 and the image plane, we first need to 
calculate a few other variables. 

Calculation of u2 (equation 17) allows us to calculate M2 (equation 18).  Hence 
we can calculate the displacement between DOE and LENS 2, otherwise 
known as r (equation 19).  Note that r cannot be greater than or equal to g 
since this would invalidate the system. 

Finally we can calculate v2 (equation 20). 

44..33..44  ww11::    BBeeaamm  wwaaiisstt  aatt  LLeennss  11  
The next task is to calculate the diameter of the beam at Lens 1: If it is larger 
than d1 then the system will not work since the image is to large to fit through 
Lens 1.  First we must calculate the furthest point from the axis to be imaged 
(equation 21). 

However, the beam from the furthest point still diverges and this additional 
distance is calculated as in equation 22.  
Combining these calculations gives a beam 
waist as shown in equation 23. 

44..33..55  ww22::    BBeeaamm  wwaaiisstt  aatt  LLeennss  22  
Analogous to w1 above, we can calculate the beam waist at Lens 2. 

First we must calculate h2 (equation 24) 
followed by v1 (equation 25).  This beam 
waist also incurs additional size due to 
divergence, as shown in h2 (equation 26). 
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To complete the calculation all we need do is calculate equation 27.  Once 
again, if w2 is greater than or equal to d2 
the system will not be able to function 
correctly. 

44..33..66  hhII::    IImmaaggee  SSiizzee    
To ensure that all calculations are correct, a 
quick check can be made by calculating the 
image size hI.(equation 28): its value should 
be M times the magnitude of h1. 

44..33..77  wwHH::    BBeeaamm  WWaaiisstt  aatt  DDOOEE  
One of the preconditions of this system is that there is not a focal point 
between Lens 1 and Lens 2 i.e. 
f1+f2>g.  This is advantageous in that 
we can calculate the divergence of 
the beam �div (equation 29) between Lens 1 and Lens 2 using trigonometry.  A 
diverging beam is represented by a positive value, a converging by a negative 
value. 
This allows us to calculate the 
beam waist at the DOE wH 
(equation 30).  If this value is 
larger than the DOE’s diameter then the system will again be invalid. 

44..33..88  AA  DDiissttaannccee  MMooddeell  
The Matlab program produced hundreds of values on each test pass as g was 
gradually varied, so a method was needed to grade each result.  It was 
decided that a value which represented the overall optical system size and 
also beam divergence between Lens 1 and Lens 2 should be used (Note that 
system size was considered to be twice as important as beam divergence).  
This allowed the quality of any valid system solution to be estimated while the 
program exhaustively tried different lens combinations and varied g. 

44..33..99  LLeennss  SSyysstteemm  SSoolluuttiioonn  
Given tolerances of a maximum system size of 1000 
mm, 5 mm minimum distance between components 
and maximum deviation of VCSEL to LENS 1 
distance u1 against focal length f1 of 50%, the 
program gave the test results shown in section 10.1.  
The best distance measure had a solution for 
g=15mm with f1=40 mm and f2=80 mm.  This 
solution was implemented and after careful 
alignment proved to be a valid solution. 
Figure 14 shows a photograph of four VCSELs being 
projected onto the detector array as before.  
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Although the image quality is poor what is important here is that each of the 
projected orders from the VCSELs land exactly on a detector. 

44..44  DDeetteeccttoorr  AArrrraayy  

The detector array is a 10 by 10 
matrix with a spacing of 1.5 mm 
between the centre of each detector.  
Obviously, not the entire matrix is 
needed and only the middle 6 rows 
and 8 columns are actually used.  
This section tested the detector array by 
examining the sensitivity range of each 
element used. A diagram of the detector 
electrical circuit can be seen in figure 10 
and is marked as ‘Detector Board’.  The 
problem associated here was that because 
the system was on a pre-fabricated board it 
was only possible to take measurements at 
specific points.  The two values chosen 
were: 

Icc1: The current sunk through the 
photodiode is directly proportional to the 
amount of light detected.  If the efficiency of 
the photodiode array was known it would 
be possible to calculate the exact amount 
of light in watts, but unfortunately it was 
not. 

Vp: Voltage output from the detector board 
pre-amplifier. 
The experimental setup simply consisted of 
a VCSEL’s output being directed through 
an aperture onto a single detector.  By 
slowly increasing the power, it was possible to determine the minimum 
amount of current which needed to be sunk to start having an effect on the 
output voltage.  The same method was also used to find the point at which the 
detector board saturated and any further difference in incident intensity would 
not be detected.  This allowed determination of the working range.  Figures 16 
and 17 graph the results of minimum and maximum photo-currents with 
statistical analysis in figure 15.  Detailed are results available in Appendix D. 
It can be easily seen that, due to a complete lack of sensitivity, detectors 29 
and 35 are not working correctly.  This result proves significant in that if these 
detectors are avoided during testing it will prevent erroneous results.  In 
addition, it was also detected that the detectors for channels 9 and 10 were 
wired round the wrong way. 
Note that problems were encountered with the connectors between both 
detector board and amp-board.  Fortunately, an easy method was found to 

Vp max (V) Vp min (V) Icc1 min (µA) Icc1 min (µA)
Minimum 3.80 0.50 0.30 3.60
Average 4.10 0.83 0.46 3.98
Maximum 4.30 1.00 0.90 4.20
St. Dev. 0.12 0.10 0.14 0.14

Average 4.00 0.73 0.36 3.88

Average 4.20 0.93 0.56 4.08

With Minimum Error (-0.1 from all values)

With Maximum Error (+0.1 on all values)

40 to 47

32 to 39

24 to 31

16 to 23

8 to 15

0 to 7

D
etector R

ow

Minimum Sensitivity  of Detectors (µA)

0.00-0.10 0.10-0.20 0.20-0.30 0.30-0.40 0.40-0.50
0.50-0.60 0.60-0.70 0.70-0.80 0.80-0.90 0.90-1.00

40 to 47

32 to 39

24 to 31

16 to 23

8 to 15

0 to 7

D
etector R

ow

Maximum Sensitivity  of Detectors (µA)

3.40-3.49 3.49-3.58 3.58-3.67 3.67-3.76 3.76-3.85
3.85-3.94 3.94-4.03 4.03-4.12 4.12-4.21 4.21-4.30
0.00

Figure 15

Figure 16

Figure 17
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diagnose this problem: the detector’s output, when measured at the amp-
board, will be seen to float about 2-3V with no light rather than the normal of 
~4V. 

44..55  TThhee  DDiiffffrraaccttiivvee  OOppttiicc  EElleemmeenntt  ((DDOOEE))  

This project also examined the efficiency of the DOE.  Various VCSELs were 
chosen at random and a driven such that their output power did not saturate 
the detectors.  The photo-current sunk by each detector was then measured 
thus allowing a comparison of the optical power in each order. 
The problem with this examination is that there are many sources of error, 
ranging from imprecision in VCSEL and driver output to detector non-linearity.  
However, to help reduce channel specific values, the optical powers were 
normalised against the 0th order thus making them more comparable to one 
another. 

Figures 18 and 19 show the results taken for a random set of channels 
(Appendix E shows more detailed results).  These graphs consider the x 
orders to be the horizontal line of the DOE output when looking onto the 
detector array and y orders the vertical. 
The most important line here is the ‘average value’.  This is the best indication 
of the response of the DOE.  It clearly shows that most of the orders seem 
fairly stable at 20 times the magnitude of the zero order: except for in the 
positive x direction where x+5 and x+6 prove to be consistently low. 

44..66  EElleeccttrroonniicc  MMoodduulleess  

44..66..11  AAmmpp--BBooaarrdd  
This module is designed to amplify the output from the detector 
board and also includes a high pass filter to remove any DC 
component from the input signal.  Figure 10 shows the layout of 
the amp-board and figure 20 a picture. 
This module was tested by inputting a signal which swept the 
entire voltage range output by the stage before it.  With 
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Figure 18
The x axis is the horizontal axis when viewed on the detector array.  The 0th

order is x and is found at the centre of the cross. 

Figure 19
The x axis is the horizontal axis when viewed on the detector array. 
The 0th order is x and is found at the centre of the cross. 

Figure 20
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amplification set at –1, the expected inverted output was received.  This test 
was repeated for each and every channel and the output monitored. 
Testing found a damaged amplifier chip where one of the four operational 
amplifiers was not working as expected.  The damaged chip was promptly 
replaced.  This implementation uses the Texas Instruments operational 
amplifier LM324N as detailed in Appendix F. 

44..66..22  NNeeuurraall  SSwwiittcchh  CCaarrdd  
Before testing could commence, it was also necessary to 
test and calibrate the neural switch card.  Figure 10 
shows the neural switch card’s layout and figure 21 a 
photograph of the implemented system. 
The first task was to set up correct reference voltages, as 
defined previously by calculation [3]: 

Vstart = VR9 = 5.01V ±0.001V 
Vrio/ref = VR10 = 2.81V ±0.001V 
Voff = VR11 = 3.92V ±0.001V 
Analog 7V = VR12 = 7.000V ±0.5V 
Analog 6V = VR13 = 6.000V ±0.001V 
Significant instability was noticed on the analog 7V channel and a dry joint 
was suspected.  Careful soldering in the suspected area lead to its discovery 
and after re-soldering the reference voltage became stable: 
Analog 7V = VR12 = 7.000V ±0.001V 
The next step was to calibrate the VCSELs using available optical output 
power versus drive current data.  A solution was devised where an ammeter 
was inserted into the circuit just before the VCSEL to measure drive current.  
A square wave was then applied to the channel being measured with a 
frequency of 0.5Hz so that the full range of neuron input voltages were swept 
(i.e. input voltage between the amp-board’s output limits).  By observing the 
drive current carefully, minimum and maximum values could be determined, 
allowing variable resistors R10 and 
R11 (figure 10) to be adjusted to give 
the appropriate optical power output.  
The optical output powers chosen 
were 0.05mW representing an ‘off’ 
state and 0.8mW for ‘on’.  Previous 
data is available on the HP 
Workstation under ‘VSL1:DATA6’.  
This method of testing also had the 
advantage that the electrical circuit 
for each neuron would be tested 
simultaneously. 
Before adjustment of the system 
could begin it was necessary to 
verify the validity of the previous 
data.  The reason for this was that 
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the VCSELs were originally profiled in a colder environment than that during 
the experiment.  Any large variance in threshold would indicate a temperature 
dependent change in characteristics.  One VCSEL was chosen at random and 
its optical output power versus drive current curve plotted to find its threshold 
(see figure 22). The data on the graph allowed determination of a change in 
threshold: all new thresholds are now 94% of the original. 
A foreseeable problem was that the resistance of the ammeter would be high 
in comparison to that of the VCSEL.  The manufacturer’s data and application 
of Ohm’s law allowed calculation of minimum (235�) and maximum (500�) 
VCSEL resistances, dependent on drive current.  Measurement of the 
ammeter’s resistance showed that it was 7.6�.  This is a worst case 
difference in resistance of 3.2% which was considered unacceptable.  The 
range on the ammeter was then changed and one selected which had a 
resistance of 1.1� (0-200mA).  This gave an influence of 0.47% worst case 
and is well within tolerable limits. 
Conversion of all values extracted from the HP workstation was also required 
since it only displays the optical power for a given current in 0.2mA steps.  
Presuming that the increase between two points is relatively linear, we can 
create a formula to calculate the desired optical power output given current 
and optical powers of the two points next to it.  Note that equation 31 also 
takes into account the temperature change, where: 

Preq = Power output desired. 
PU = Power output from VCSEL with a 
drive current of IU.  These are the 
upper (or higher) values. 
PL = Power output from VCSEL with a 
drive current of IL. (not used in this 
equation).  These are the lower 
values. 
Ireq = Current to be used to drive VCSEL. 
Calculation of each value can be found in Appendix G. 
This data now allows calibration of the Neural switch card.  Systematic 
adjustment of R10 and R11 should swing the VCSEL current between the two 
desired values for the appropriate channel.  Before calibrating any VCSEL, it 
was ensured that both variable resistors were at absolute minimum power out.  
Even so, VCSELs began to fail during calibration.  Careful examination 
revealed that when negative was not connected on the ammeter there was an 
AC coupling of ~±1.1V present.  Any negative bias is capable of damaging a 
VCSEL if it exceeds ~-2V (the tolerance of which is not known): but this 
should not be enough to cause considerable damage.  A very serious problem 
was noticed later: the outputs from the neural switch card take on a -5V 
potential when the negative terminal is not connected.  Avoidance of this 
situation was made to prevent possible damage to any more VCSELs. 
Once calibration was completed, the following points were noted: 
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Ch. Notes 
0 VCSEL fail.  Power outputs calibrated. 
3 VCSEL fail.  Cannot calibrate: biases set to minimum. 
10 Drive current low.  750� connected in parallel with 470� bias. 
16 Detector and VCSEL fail.  Cannot calibrate so current set to minimum. 
17 VCSEL fail.  Calibrated. 
18 Drive current low: parallel 1k� resistor connected. 
19 VCSEL fail.  Calibrated. 
22 VCSEL fail.  Cannot calibrate so current set to minimum. 
24 VCSEL works but optical power output low.  Current calibrated. 
34 VCSEL fail.  Calibrated. 
35 Detector fail. 
36 Drive current low: parallel 750k� resistor connected. 
37 VCSEL fail.  Calibrated. 
38 Drive current low: parallel 750k� resistor connected.  VCSEL fail. 
39 VCSEL fail.  Cannot calibrate so current set to minimum. 
Some channels are marked as ‘cannot calibrate’.  This is not actually the case 
as all channels could be calibrated if components were replaced.  However, 
there is little point in doing this as the VCSELs do not work in the first place so 
the currents were set to a minimum so that as little power as necessary was 
drawn. 
The only task left was to test the system. 

44..77  IInnvveessttiiggaattiioonn  ooff  SSyysstteemm  RReessppoonnssee  

This section examines the complete system where 
all components and modules were assembled and 
tested.  Figure 23 lists all component values with 
reference to figure 10 for component integration. 
During testing, all channels with failed VCSELs, low 
power VCSELs and failed detectors were not used – 
these channels are listed in section 4.6.2.  Optical 
alignment was again re-checked to ensure accuracy.  
Three important points were carefully re-checked: 

�� Total VCSEL power output did not saturate 
detectors in off state. 

�� Vref produced a correct response. 

�� Amplification on amp-board was set correctly. 
It was found that the total power output was too high, so instead of laboriously 
re-calibrating every part of the system a beam splitter was simply inserted. 
Three channels were chosen at random from the usable selection and their 
output examined.  It became clear that certain neurons seemed to have 
priority over others.  Examination of the system showed that the VCSELs did 
not seem to be correctly calibrated and switching on some VCSELs induced a 
photo-current twice the size of others.  The induced photo-currents were 

R1=100� R2=100k�
R3=470� R4=1k�
R5=3.3k� R6=100k�
R7=100k� R8=100k�
R9=470� R10=500�
R11=1k� R12=1k�
C1=47pF C2=10nF

Component Values

Figure 23
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therefore carefully examined as can be seen in Appendix H.  These 
measurements proved that the VCSELs were indeed miscalibrated but what 
was not clear was by how much.  Although not considered before, examining 
figure 22 shows that not only is the threshold different but so is the gradient.  
This threw into question the accuracy of the calibration data so the optical 
power output from a few VCSELs was measured: and found to be drastically 
different.  For example, channel 7 produced 1.293mW when turned on while 
channel 36 produced 2.193mW – both were supposedly calibrated at 0.8mW 
and such output powers are beyond VCSEL’s 
safe operating limits. 
Time constraints at this point in the project 
prevented re-calibration of the VCSEL array, 
so a set of channels were selected that had a 
similar induced photo-current level of 1.6µA 
per detector (±0.1µA), as shown in equation 
32. 
Testing was performed by requesting a set of 
neurons and examining which turned on using the program ‘NETRUN’ on the 
HP workstation.  If the neurons which turned on indicated a valid and optimal 
solution then the test was considered successful.  The test data is saved in a 
file on the HP workstation under HOP:TSEQ. 
Figures 33 and 34 show 
some sample results and 
outputs with more detailed 
results in Appendix I. 
During testing it became 
obvious that Vref  played an 
important role in as far as 
finding a valid solution is 
concerned, sometimes 
requiring extremely fine 
adjustment. 
Examination of the system 
indicated that detector 
saturation could be causing 
a problem, thus 
photographic film was 
inserted into the system 
which absorbed ~33% of 
throughput power.  This did 
result in valid solutions for higher power levels, but not for lower ones: Vref had 
to be adjusted to a specific level before the system would find a solution for 
request matrices. 
There was obviously something more fundamentally wrong with the system 
than simply a power problem.  The next stage was to check the amplifier 
outputs (Vinv, figure 9) and ensure they were as expected.  It was decided to 
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All channels which contain a 1 were selected for testing 
due to similar VCSEL characteristics. 
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monitor two neuron outputs: that of a neuron which was requested but turned 
off and that of a neuron which was not requested, nor did it turn on. 
A major problem immediately became apparent: when a neuron turns off, it 
should fall from ~4V to the same value as the switched off neuron (Voff, ~2V) 
before switch off time.  Unfortunately it does not and will go no lower than 
~3V.  The first solution was to increase amplification on the amp-board but 
this only resulted in the neuron choosing quicker and still going no lower than 
~3V. 
Various attempts were made to bring the minimum value down from ~3V to 
~2V including increasing the amp-board drive voltage from 5V to 10V.  This 
solution, although helpful, still did not solve the problem. 

Next, an attempt was made to adjust the voltage levels of Vrio/ref, Voff and Vstart.  
This started to alter the voltage levels, but because of the circuit design it was 
not possible to adjust them to a great enough degree.  After trying various 
methods it was concluded that without changing component values or 
perhaps even re-designing the reference voltage system on the neural switch 
card it would not be possible to create a fully working system. 
There is also one final point that any further work should consider: the system 
seemed very sensitive to any movement of the inserted beamsplitter, 
suggesting that the filter is setting up a resonance cavity.  Either this 
possibility should be investigated or the filter replaced by some other method 
of reducing optical throughput. 
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This report has carefully looked at the theory and implementation of an 
optoelectronic neural network for switching and provided some promising 
results.  It has been shown that, with further work, the optical neural network 
can be implemented as proposed.  Nevertheless, various problems still need 
to be eradicated in the hardware system, one of which being size.  Even 
though the system is exceedingly efficient at routing, it still faces the problem 
of hardware complexity when embedded in large switches. 
What makes this system so interesting is its diversity: switching is only one of 
its many applications.  Essentially, this system could be used to solve any 
quadratic assignment problem where time is of the essence.  Its ability to 
handle larger order problems without serious performance degradation 
emphasises the contribution such systems could make to the field of 
computing. 

55..11  FFuuttuurree  WWoorrkk  

There are a few areas which need refinement in this system, but to bring it 
into working order the following two recommendations should be carried out: 

�� Each VCSEL needs to be re-profiled so that the system can be calibrated 
correctly. 

�� The neural switch card needs to be modified so that the reference voltages 
can be varied over a larger range. 

A further interesting point is temperature sensitivity: in particular that of the 
VCSELs.  The current VCSEL characteristics differ dramatically from those 
measured beforehand – the only change being a temperature difference.  
Although it is unlikely that such a large difference was caused by air 
temperatures in hot and cold rooms, it is worth eliminating as a possible 
cause. 
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AC Alternating Current 
ATM Asynchronous Transfer Mode 
DC Direct Current 
DOE Diffractive Optic Element 
TSP Travelling Salesman Problem 
VCSEL Vertical Cavity Surface Emitting Laser 
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This section contains Matlab V4.2.1c for Mac code for theoretical simulation of 
the neural network used in this project. 

88..11  TThheeoorryy__mmooddeell..mm  
% Theoretical Switch Controller 
% Step by step 
 
function Theory_model() 
 
% Clear all variables, functions and MEX links. 
clear all 
% Set up neuron type. 
program = 'Theory'; 
% Indicate startup and tell user neuron type. 
fprintf('__________________________________________________\n') 
fprintf(['Running network with ', program, '\n']) 
 
% Set up local variables. 
order=10;   % Order x order crosspoints. 
A0=1250;    % A=B. Weights to elements in same row or column. 
A=A0*ones(order);   % Create a matrix of size 'order' where all values are A0. 
C=100;    % Set optimisation value. 
dt=0.1;    % Time increment. 
Tlpf=3;    % LPF time constant. 
Tph=10*Tlpf;   % Length of run: 10 times Tlpf. 
noise=1e-3;    % rms noise amplitude. 
slope=0.02;   % For linear neuron (max sigmoid slope for beta = 0.08) 
randn('seed', cputime);  % Choose new seed for gaussian noise based on CPU time. 
 
request=ones(order);  % Intial requested crosspoints. 
% request=tril(ones(order)); % Intial requested crosspoints. 
trecord=[0: dt: Tph]; 
X=zeros(order);   % Initial states. 
Y=zeros(order); 
 
% Initialise memory for record of successive states 
Xrecord=zeros(length(trecord), order^2); 
Yrecord=zeros(length(trecord), order^2); 
% Start with initial states: Fill row 1 of Xrecord with contents of X (same for Y). 
Xrecord(1,:) = X(:)'; 
Yrecord(1,:) = Y(:)'; 
 
% Start timing. 
tic 
 
% Repeat for every element in trecord. 
for i=2: length(trecord) 
 
 % Amplify and truncate each neuron output, then multiply by request. 
 Y=lin_neuron(X, slope).*request; 
 
 % Update input voltage to each neuron 
 X=X+dt/Tlpf.*(-X-A.*Xbar_wts(Y)+C/2)+noise.*randn(order); 
 
 % Let the user know it's alive. 
 if (rem((i-1), 50)==0) 
  fprintf('.\n'); 
 else 
  fprintf('.'); 
 end; 
  
 % Record successive states.  
 Xrecord(i,:)=X(:)'; 
 Yrecord(i,:)=Y(:)'; 
end 
 
% Tell the user that your finished. 
fprintf(['Finished. Time taken = %5.1f sec.\n'], toc) 
fprintf('__________________________________________________\n') 
figure ('Name', 'Final output') 
Start_end_image(trecord, Yrecord, request) 
plot_x 
Xmax=max(max(Xrecord)); 
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% Axis([trecord(1), trecord(length(trecord)), -Xmax, Xmax]) 
plot_y 

88..22  LLiinn__nneeuurroonn..mm  
% Y=lin_neuron(X, slope) 
% 
% Each element in X is multiplied by slope and has 0.5 added. 
% Values then truncated to within [0, 1]. 
% 
% Amplifier with gain = slope acting on elements of X. 
% Output limits at 0, 1. 
% lin_neuron(0)=0.5. 
function Y=lin_neuron(X, slope) 
 
Y=max(0, min(1, 0.5+slope.*X)); 

88..33  XXbbaarr__wwttss..mm  
% Ysum(i,j) is the sum of row i + the sum of column j in Y excluding element Y(i,j). 
function Ysum=Xbar_wts(Y) 
 
Ysum=sum(Y')'*ones(1, size(Y, 2))+ones(size(Y, 1), 1)*sum(Y)-2*Y; 

88..44  PPlloott__yy..mm  
% Plot evolution of outputs 
figure ('Name', ': outputs') 
plot(trecord, Yrecord); % plot Y/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('Y'); 

88..55  PPlloott__xx..mm  
% Plot evolution of inputs 
figure ('Name', [program, ': inputs']) 
plot(trecord, Xrecord); % plot X/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('X'); 

88..66  SSttaarrtt__eenndd__iimmaaggee..mm  
% Show outputs as image 
function Start_end_image(trecord, Yrecord, request) 
 
% Create colormap 
maplength = 16; 
shade1=[0, 0, 0.5];   % 'bottom' shade for colourmap (R, G, B). 
shade2=[1, 0, 0];   % 'top' shade for colourmap. 
map=[linspace(shade1(1), shade2(1), maplength)', linspace(shade1(2), shade2(2), maplength)', 
linspace(shade1(3), shade2(3), maplength)']; 
colormap(map) 
 
t=trecord(length(trecord)); 
order=sqrt(size(Yrecord, 2)); 
Y=reshape(Yrecord(size(Yrecord, 1), :), order, order); 
 
image(max(Y, request/2)*maplength) 
axis square 
title(['Request & final state. t = ', num2str(t)]); 
drawnow 
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This section contains Matlab V4.2.1c for Mac code for theoretical simulation of 
the electronic and optical system used to implement a neural network. 

99..11  RRuunn__CCiirrccuuiitt..mm  
% Run circuit runs the Optical Network simulation 
% Code cleaned up by Keith Symington 
% Author unknown. 
 
% Clear all variables and pack memory. 
fprintf('Initialisation: Memory cleanup...'); 
clear all; 
pack; 
fprintf('done.\n'); 
 
% Count flops. 
tic 
% Define the neuron being used. 
program='Neuron8 (linear comparator)'; 
fprintf('____________________________________________________\n'); 
fprintf(['Running circuit with ', program, '\n']); 
 
% Set up all global variables. 
global Kd Vpb Vpmin Rf Thpf Vcb Gc Vcmax Vcmin Vinrange Tlpf Voff Vstart Vref Rl Kl comp_noise 
% Initialise parameter settings. 
Init_circuit; 
 
% Set up initial states. 
Y=Ninverter(0,Vstart,Vref,0).*ones(order).*Kl./Rl; 
 
% Initialise memory for record of successive states. 
fprintf('Initialisation: Memory allocation for recording progress...'); 
Xrecord=zeros(length(trange), order^2);   
Yrecord=zeros(length(trange), order^2); 
Vprecord=zeros(length(trange), order^2); 
Vhpfrecord=zeros(length(trange), order^2); 
Vcoutrecord=zeros(length(trange), order^2); 
Vlpfrecord=zeros(length(trange), order^2); 
Vinvrecord=zeros(length(trange), order^2); 
fprintf('done.\n'); 
 
% Calculate for every value in the time sequence. 
for i=1:length(trange) 
 % Select time value for appropriate iteration. 
 t=trange(i); 
 % Is this the first cycle? 
 if i>1 dt=t-trange(i-1); 
 else dt=trange(2)-t; 
 end 
  
 % Set enable dependent on iteration number. 
 enable=enablerange(i); 
  
 % Optical Input. 
 X=H.*Xbar_wts(Y)+noise.*randn(order); 
 % Optical Output. 
 [Vp,Vhpf,Vcout,Vlpf,Vinv,Y]=neuron8(X,enable,request,dt); 
 
 % Record successive states. 
 Xrecord(i,:)=X(:)'; 
 Yrecord(i,:)=Y(:)'; 
 Vprecord(i,:)=Vp(:)'; 
 Vhpfrecord(i,:)=Vhpf(:)'; 
 Vcoutrecord(i,:)=Vcout(:)'; 
 Vlpfrecord(i,:)=Vlpf(:)'; 
 Vinvrecord(i,:)=Vinv(:)'; 
end 
 
% Tell the user that the system is finished. 
fprintf(['Finished. Time taken = %5.1f sec.\n'], toc) 
 
% Reset tic. 
tic; 
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% Draw the solution that the system proposed. 
figure ('Name', 'Final output') 
Out_image 
 
% Plot the voltage characteristics at various stages. 
plot_volts 
fprintf(['Time taken for plotting = %5.1f sec.\n'], toc) 
fprintf('____________________________________________________\n') 

99..22  IInniitt__cciirrccuuiitt..mm  
% Intialise circuit 
 
% Random seeds. 
randn('seed', cputime);   % Choose new seed for gaussian noise. 
rand('seed', cputime);   % Choose new seed for uniform noise. 
 
order=6; 
dt1=0.02e-6;    % Time increment 1. 
dt2=1e-6;    % Time increment 2. 
Thpf=2.2e-3;    % HPF time constant. 
Ctol=0;     % capacitor tolerance. 
Tlpfmean=33e-6;    % mean value of LPF time constant. 
Tlpf=Tlpfmean*(1+Ctol*rands(order)); % LPF time constant: 
     % (Varies because of capacitor tolerance.) 
Tph1=10e-6;    % Length of settling period. 
Tph2=0.3e-3;    % Length of run. 
Tph3=0;     % Length of run. 
 
noise=1e-9;    % Noise equivalent power (rms). 
comp_noise=0.002;    % Comparator noise. 
Kd=0.5;     % Detector sensitivity. 
Vpb=2.1;     % Preamp quiescent. 
Vpmin=0.1;    % Preamp lower limit. 
Rf=1e6;     % Transimpedance. 
Vcb=2.11;    % Comparator quiescent. 
Gctol=0;     % Comparator gain tolerance. 
Gcmean=213;    % Mean comparator gain. 
Gc=Gcmean*(1+Gctol*rands(order));  % Comparator gain. 
Vcmax=3.92;    % Comparator max. 
Vcmin=0.31;    % Comparator min. 
Voff=Vcmax;    % Off voltage. 
Vstart=Voff-((Vcmax-Vcmin)/50)/(order-1); % Start voltage. 
Vref=Vcb;    % Inverter reference voltage. 
Vthresh=Ninverter(Vcb,Vstart,Vref,1);  % Threshold for classifying output. 
Rl=1.2e3;    % Laser drive resistor. 
Kltol=0;     % Laser A/W tolerance. 
Klmean=0.24;    % Mean Laser A/W. 
Kl=Klmean*(1+Kltol*rands(order));  % Laser A/W. 
Htol=0;     % Optical loss tolerance. 
Hmean=2.0e-3;    % Mean optical loss. 
H=Hmean*(1+Htol*rands(order));  % Optical loss 
 
% Requested crosspoints. 
request=ones(order); 
% Alternative requested crosspoints. 
% request=tril(ones(order)); 
 
% Set up trange: Minimum time, step size and maximum time. 
% Creates an array with an element for each step. 
trange=[-Tph1: dt2:  Tph2+Tph3]; 
% Alternative trange. 
% trange=[-Tph1: dt2: 0, dt1: dt1: Tph2, Tph2+dt2: dt2: Tph2+Tph3]; 
 
% enablerange is derived from trange: element contains a 1 when time 
% has gone past zero. 
enablerange=trange>0; 

99..33  NNiinnvveerrtteerr..mm  
% Inverter with gated input. 
% Used by neuron7 & neuron8. 
function Vinv=Ninverter(Vin, Vstart, Vref, enable) 
 
% Inverter output 
Vinv=(2*Vref-Vin).*enable+(2*Vref-Vstart).*(~enable);  
 
% Alternative inverter output 
% Vinv=(2*Vref-Vin).*enable+(1.5*Vref-0.5*Vstart).*(~enable); 
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99..44  RRaannddss..mm  
% rands, rands(m) or rands(m, n) 
% Generate (arrays of) random numbers uniformly distributed between -1 and +1. 
% Based on rand. 
function R=rands(m, n) 
 
if nargin==0 
 R = 2.*rand-1; 
elseif nargin==1  
 R = 2.*rand(m)-1; 
elseif nargin == 2  
 R = 2.*rand(m, n)-1; 
end 

99..55  XXbbaarr__wwttss..mm  
% Ysum(i,j) is the sum of row i + the sum of column j in Y excluding element Y(i,j). 
function Ysum=Xbar_wts(Y) 
 
Ysum=sum(Y')'*ones(1, size(Y, 2))+ones(size(Y, 1), 1)*sum(Y)-2*Y; 

99..66  OOuutt__iimmaaggee..mm  
% Output image 
% Show outputs as image 
 
% Create colormap 
maplength = 16; 
shade1 = [0, 0, 0.5];   % 'bottom' shade for colourmap (R, G, B). 
shade2 = [1, 0, 0];    % 'top' shade for colourmap. 
map = [linspace(shade1(1), shade2(1), maplength)', linspace(shade1(2), shade2(2), maplength)', 
linspace(shade1(3), shade2(3), maplength)']; 
colormap(map) 
 
Ymin = min(min(Y)); 
Yrange = max(max(Y)) - Ymin; 
image((Y-Ymin)*maplength/Yrange) 
axis square 
if exist('t') 
 title(['Neuron ouputs. t = ', num2str(t)]);  
else 
 title('Neuron ouputs'); 
end 
drawnow 

99..77  NNeeuurroonn88..mm  
% neuron8 approximates to real circuit. 
% The comparator output is gated by the enable matrix. 
% Q is the optical input. 
% Y is the optical output. 
function [Vp,Vhpf,Vcout,Vlpf,Vinv,Y]=neuron8(Q,enable,request,dt) 
 
global Kd Vpb Vpmin Rf Thpf Tlpf Voff Vstart Vref Rl Kl comp_noise 
 
Vp=max(Vpb-Q.*Kd.*Rf, Vpmin);   % Preamp voltage. 
Vhpf=HPF(Vp, dt./Thpf);    % High-pass filter output. 
Vcout=lin_comparator(Vhpf);   % Comparator output. 
Vlpf=LPF(Vcout, dt./Tlpf)+comp_noise.*rands(size(Vcout)); % Low-pass filter output. 
Vsel=Vlpf.*request + Voff.*(~request);  % Select outputs. 
Vinv=Ninverter(Vsel,Vstart,Vref,enable);   % Inverter output. 
Y=Vinv.*Kl./Rl;     % Light output. 

99..88  HHPPFF..mm  
% High-pass CR filter response. 
% Vin = input voltage 
% dt = time increment normalised to filter time constant (ie. dt/tau), 
% Vinit = previous steady-state input voltage (optional). Defaults to Vin. 
% If Vin and Vinit are vectors or arrays, they are treated as voltages on 
% parallel filters, not as time series. 
% Warning: must initialise Vinit or "clear all" if dimensions of Vin change! 
function Vout = HPF(Vin, dt, Vinit) 
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% ..so that it can be remembered. 
global Vcap_hpf 
 
% Set up array for previous states if necessary. 
if nargin==3 
 % Set previous steady-state input voltage if given as a parameter. 
 Vcap_hpf=Vinit; 
elseif ~exist('Vcap_hpf') 
 % Initialise Vcap_hpf if it doesn't exist already 
 Vcap_hpf=Vin; 
end 
 
% Perform filtering. 
Vcap_hpf=Vin.*dt+Vcap_hpf.*(1-dt); 
Vout=Vin-Vcap_hpf;  % dt is assumed to be small 

99..99  LLPPFF..mm  
% Low-pass RC filter. 
% Vin = input voltage, 
% dt = time increment normalised to filter time constant (ie. dt/tau), 
% Vinit = previous output voltage (optional). 
% If Vin and Vinit are vectors or arrays, they are treated as voltages on 
% parallel filters, not as time series. 
% Warning: must initialise Vinit or clear all if dimensions of Vin change! 
function Vout=LPF(Vin, dt, Vinit) 
 
% ..so that it can be remembered. 
global Vlast_lpf 
if nargin == 3 
 % Set previous output voltage if given. 
 Vlast_lpf = Vinit; 
elseif ~exist('Vlast_lpf') 
 % Initialise Vlast_lpf if it doesn't exist already 
 Vlast_lpf = Vin; 
end 
 
Vout = Vin.*dt + Vlast_lpf.*(1-dt); % dt is assumed to be small 
Vlast_lpf = Vout; 

99..1100  LLiinn__ccoommppaarraattoorr..mm  
% inverting comparator with linear range 
function [Vout]=lin_comparator(Vin) 
 
global Vcmax Vcmin Vcb Gc 
 
% Calculate output. 
Vout=max(Vcmin, min(Vcmax, Vcb - Vin.*Gc)); 

99..1111  PPlloott__vvoollttss..mm  
% Plot evolution of circuit voltages and optical input and output. 
 
figure ('Name', 'Input Power (inv. wrt OP)') 
plot(trange, Xrecord); % plot X/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('input power, W'); 
 
figure ('Name', 'Preamp output') 
plot(trange, Vprecord); % plot Vp/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('preamp, V'); 
 
figure ('Name', 'High-pass output') 
plot(trange, Vhpfrecord); % plot Vhpf/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('high-pass, V'); 
 
figure ('Name', 'Comparator output (inv. wrt OP)') 
plot(trange, Vcoutrecord); % plot Vcout/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('comparator, V'); 
 
figure ('Name', 'Low-pass output (inv. wrt OP)') 
plot(trange, Vlpfrecord); % plot Vlpf/time for each neuron 
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grid 
xlabel ('time'); 
ylabel ('low-pass, V'); 
 
figure ('Name', 'Inverter output') 
plot(trange, Vinvrecord); % plot Vinv/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('inverter, V'); 
 
figure ('Name', 'Output Power') 
plot(trange, Yrecord); % plot Y/time for each neuron 
grid 
xlabel ('time'); 
ylabel ('output power, W'); 
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This appendix contains test results and code in Matlab 4.2.1c (Mac) for the 
lens system redesign. 

1100..11  TTeesstt  RReessuullttss  
Lens Modelling Program V1.00 
Written 1998 by Keith Symington 
  
Using first 1 and second 1: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 1 and second 2: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 1 and second 3: 
Warnings...  
Optimal solution for f1=25, f2=80 is g=56. 
Distance from VCSEL to LENS1: 19.047619 mm 
Distance from LENS1 to DOE: 50.900000 mm 
Distance from DOE to LENS2: 5.100000 mm 
Distance from LENS2 to Image plane: 194.285714 mm 
Total size of system: 269.333333 mm 
Beam waist at LENS1: 5.163879 mm 
Beam waist at LENS2: 7.628594 mm 
Beam divergence of: 2.521339 degrees. 
Beam waist at DOE: 7.404128 mm 
Image size on image plane: -7.500000 mm 
Calculations complete. 
No errors encountered. 
No warnings issued. 
  
Using first 1 and second 4: 
ERROR: System unsolvable. 
 
Using first 1 and second 5: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 2 and second 1: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 2 and second 2: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 2 and second 3: 
Warnings...  
Optimal solution for f1=40, f2=80 is g=15. 
Distance from VCSEL to LENS1: 29.841270 mm 
Distance from LENS1 to DOE: 5.218750 mm 
Distance from DOE to LENS2: 9.781250 mm 
Distance from LENS2 to Image plane: 201.904762 mm 
Total size of system: 246.746032 mm 
Beam waist at LENS1: 6.673410 mm 
Beam waist at LENS2: 6.268685 mm 
Beam convergence of: 1.545839 degrees. 
Beam waist at DOE: 6.532599 mm 
Image size on image plane: -7.500000 mm 
Calculations complete. 
No errors encountered. 
No warnings issued. 
  
Using first 2 and second 4: 
Warnings...  
Optimal solution for f1=40, f2=150 is g=131. 
Distance from VCSEL to LENS1: 29.830508 mm 
Distance from LENS1 to DOE: 5.255556 mm 
Distance from DOE to LENS2: 125.744444 mm 
Distance from LENS2 to Image plane: 378.813559 mm 
Total size of system: 539.644068 mm 
Beam waist at LENS1: 6.671905 mm 

1100  AAppppeennddiixx  CC  
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Beam waist at LENS2: 14.517242 mm 
Beam divergence of: 3.430308 degrees. 
Beam waist at DOE: 6.986650 mm 
Image size on image plane: -7.500000 mm 
Calculations complete. 
No errors encountered. 
No warnings issued. 
  
Using first 2 and second 5: 
Warnings...  
Optimal solution for f1=40, f2=190 is g=197. 
Distance from VCSEL to LENS1: 29.898990 mm 
Distance from LENS1 to DOE: 5.020000 mm 
Distance from DOE to LENS2: 191.980000 mm 
Distance from LENS2 to Image plane: 477.878788 mm 
Total size of system: 704.777778 mm 
Beam waist at LENS1: 6.681482 mm 
Beam waist at LENS2: 20.951347 mm 
Beam divergence of: 4.148456 degrees. 
Beam waist at DOE: 7.045110 mm 
Image size on image plane: -7.500000 mm 
Calculations complete. 
No errors encountered. 
No warnings issued. 
  
Using first 3 and second 1: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 3 and second 2: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 3 and second 3: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 3 and second 4: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 3 and second 5: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 4 and second 1: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 4 and second 2: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 4 and second 3: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 4 and second 4: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 4 and second 5: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 5 and second 1: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 5 and second 2: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 5 and second 3: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 5 and second 4: 
Warnings...  
ERROR: System unsolvable. 
  
Using first 5 and second 5: 
Warnings...  
ERROR: System unsolvable. 
  
The best combination is lens 2 first and lens 3 second with g at 15 mm. 
Lens Model: Program terminated successfully. 
» 
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1100..22  LLeennss__MMooddeell..mm  
% Lens Model V1.00 
% 1998 Keith Symington 
% 
% This script processes and executes analysis of optical distances 
% based on lens focal lengths and the diffractive optic element  
% working distance. 
 
% Initialise variables. 
Startup; 
 
% Create a main output window.  
figure(... 
      'Name',        'Lens Modelling Program V1.0', ... 
      'Color',       [0 0 0], ... 
      'NumberTitle', 'off'); 
hold on; 
 
% Local record of best system. 
bestLens1=0; 
bestLens2=0; 
OptimalG=0; 
bestDist=0; 
 
% Iterate all systems. 
for LENS_1=1:length(lensSet) 
  for LENS_2=1:length(lensSet) 
    % Set lens 1. 
    f1=lensSet(1, LENS_1); 
    d1=lensSet(2, LENS_1); 
    f2=lensSet(1, LENS_2); 
    d2=lensSet(2, LENS_2); 
 disp(sprintf('Using first %d and second %d:', LENS_1, LENS_2)); 
    % Consider all posibilities in current lens system. 
 [currentD, TempG]=Search(wsize, wbeam, verbose, f1, d1, f2, d2, L, d, M, Tsize, Tbeam); 
 if (currentD>bestDist) 
   bestDist=currentD; 
   OptimalG=TempG; 
   bestLens1=LENS_1; 
   bestLens2=LENS_2; 
 end; 
  end; 
end; 
 
% Print the best. 
disp(sprintf('The best combination is lens %d first and lens %d second with g at %d 
mm.',bestLens1, bestLens2, OptimalG)); 
 
% Say bye. 
disp('Lens Model: Program terminated successfully.'); 

1100..33  SSttaarrttuupp..mm  
% Startup module cleans up and sets some fixed startup parameters. 
clear all; 
pack; 
format compact; 
format short; 
% Clear screen and print program name. 
clc; 
disp('Lens Modelling Program V1.00') 
disp('Written 1998 by Keith Symington'); 
disp(' '); 
 
% Global variables: (not normally available in functions). 
lensSet=[25, 40, 80, 150, 190;10, 15, 25, 30, 50]; 
L=187;              % Working distance of DOE in mm. 
d=1.5;              % Displacement of apparent object in mm. 
M=-6;               % Magnification for entire system (image is inverted: 
                    % image height over object height is negative) 
Tsize=1000;         % Maximum system size in mm. 
Tbeam=(pi/180)*10;  % Beam divergence/convergence tolerance in radians. 
wsize=2;            % Weight multiplier which weights the input when calculating the optimal for 
size. 
wbeam=1;            % Weight multiplier which weights the input when calculating the optimal for 
beam. 
verbose=0;          % A value other than zero outputs information at every stage. 
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1100..44  SSeeaarrcchh..mm  
% Compute performs all the calculations for the opticals model. 
% It can be run either silently or with output.  The advantage of 
% silent mode is that slower computers do not continually give output 
% thus slowing things down. 
 
function [bestdistance, OptimalG]=Search(wsize, wbeam, verbose, f1, d1, f2, d2, L, d, M, Tsize, 
Tbeam) 
 
% Setup parameters for return from compute. 
searchdist=f1+f2; 
results=zeros(1, searchdist); 
bestdistance=0; 
OptimalG=0; 
 
% Search through all values of g. 
for counter=1:searchdist 
  % Compute value for current counter size. 
  [thetadiv, totalSize, warnings, errors]=Compute(verbose, f1, d1, f2, d2, L, counter, d, M, 
Tsize, Tbeam); 
  % Calculate distance value for current variable. 
  if ((errors+warnings)==0) 
    results(1, counter)=((((Tsize-totalSize)/Tsize)*100)*wsize)^2+((((Tbeam-
thetadiv)/Tbeam)*100)*wbeam)^2; 
  end; 
  % If this is the best value so far then store it. 
  if (results(1,counter)>bestdistance) 
    bestdistance=results(1,counter); 
    OptimalG=counter; 
    end; 
end; 
 
% Output the lens combination statistics. 
if (bestdistance>0) 
  fprintf('\nOptimal solution for f1=%d, f2=%d is g=%d.\n', f1, f2, OptimalG); 
  [thetadiv, totalSize, warnings, errors]=Compute(1, f1, d1, f2, d2, L, OptimalG, d, M, Tsize, 
Tbeam); 
 
  % Best solution measure graph. 
  title(sprintf('Best solution with f1=%d and f2=%d at g=%d',f1, f2, OptimalG)); 
  xlabel('LENS1 to LENS2 separation in mm (g)'); 
  ylabel('Distance value'); 
  grid on; 
  plot(results); 
  pause(1); 
else 
  disp(' '); 
  disp('ERROR: System unsolvable.'); 
  disp(' '); 
end; 

1100..55  CCoommppuuttee..mm  
% Compute performs all the calculations for the opticals model. 
% It can be run either silently or with output.  The advantage of 
% silent mode is that slower computers do not continually give output 
% thus slowing things down. 
 
function [thetadiv, totalSize, warningFlag, errorFlag]=Compute(verbose, f1, d1, f2, d2, L, g, d, 
M, Tsize, Tbeam)  
 
% Parameter Check 
% Check all set values for an error. 
if (g>(f1+f2)) 
  disp('ERROR: Bounds check fail - g cannot exceed focal lengths of lenses 1 and 2: f1+f2 >= g'); 
  errorFlag=errorFlag+1; 
  end; 
% Check input values. 
if (M>0) 
  disp('WARNING: Magnification normally takes a negative value.'); 
  warningFlag=warningFlag+1; 
  end; 
 
% Fixed System variables: these are not normally altered. 
Vsize=0.25;         % VCSEL size (square) in mm. 
Vnx=8;              % Number of VCSELs in x direction. 
Vny=6;              % Number of VCSELs in y direction. 
theta=(pi/180)*8;   % Beam divergence from VCSELs in radians. 
Tcomp=5;            % Minimum distance between components in mm. 
Tf1=50;             % Maximum percentage by which the VCSEL->LENS1 distance can differ. 
ddoe=22;            % Diameter of DOE in mm. 
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% Error logging. 
errorFlag=0; 
warningFlag=0; 
 
% VCSEL array to lens 1. 
u1=((((f1*f2)/M)+(f1*(g-f2)))/(g-f2-f1)); 
if (verbose) fprintf('Distance from VCSEL to LENS1: %f mm\n', u1); end; 
if (0>=u1) 
  if (verbose) disp('ERROR: Bounds check fail - u1 cannot have a negative focal length: u1 > 0'); 
end; 
  errorFlag=errorFlag+1; 
  end; 
if (Tcomp>u1) 
  if (verbose) disp('WARNING: VCSEL too close to LENS1: Tcomp > u1'); end; 
  warningFlag=warningFlag+1; 
  end; 
if (u1>(f1*(1+(Tf1/100)))) | ((f1*(1-(Tf1/100)))>u1) 
  if (verbose) disp('WARNING: VCSEL to LENS1 distance is not within tolerance to f1.'); end; 
  warningFlag=warningFlag+1; 
  end; 
 
% Lens 2 to image plane. 
u2=g-((f1*u1)/(u1-f1)); 
M2=f2/(u2-f2); 
r=u2-(L/M2); % This is position of DOE. 
if (verbose) fprintf('Distance from LENS1 to DOE: %f mm\n', (g-r)); end; 
if (0>r) 
  if (verbose) disp('ERROR: Bounds check fail - r cannot take a negative value: r >= 0'); end; 
  errorFlag=errorFlag+1; 
  end; 
if (r>=g) 
  if (verbose) disp('ERROR: Bounds check fail - DOE must lie between LENS1 and LENS2: g > r'); 
end; 
  errorFlag=errorFlag+1; 
  end; 
if (Tcomp>(g-r)) 
  if (verbose) disp('WARNING: LENS1 too close to DOE: Tcomp > (g-r)'); end; 
  warningFlag=warningFlag+1; 
  end; 
if (verbose) fprintf('Distance from DOE to LENS2: %f mm\n', r); end; 
if (Tcomp>r) 
  if (verbose) disp('WARNING: DOE too close to LENS2: Tcomp > r'); end; 
  warningFlag=warningFlag+1; 
  end; 
v2=L/(1-(r/u2)); 
if (verbose) fprintf('Distance from LENS2 to Image plane: %f mm\n', v2); end; 
if (0>v2) 
  if (verbose) disp('ERROR: Bounds check fail - distance from image plane to LENS2 cannot be 
negative: v2 >= 0'); end; 
  errorFlag=errorFlag+1; 
  end; 
if (Tcomp>v2) 
  if (verbose) disp('WARNING: LENS2 too close to Image plane: Tcomp > v2'); end; 
  warningFlag=warningFlag+1; 
  end; 
totalSize=u1+g+v2; 
if (verbose) fprintf('Total size of system: %f mm\n', totalSize); end; 
if (totalSize>Tsize) 
  if (verbose) disp('ERROR: Bounds check fail - system too large: u1+g+v2 > Tsize'); end; 
  errorFlag=errorFlag+1; 
  end; 
 
% Beam waist at lens 1. 
h1=sqrt((((Vnx*Vsize)^2)+((Vny*Vsize)^2)))/2; 
p1=2*u1*tan((theta/2)); 
w1=2*((abs(p1)/2)+abs(h1)); 
if (verbose) fprintf('Beam waist at LENS1: %f mm\n', w1); end; 
if (w1>d1) 
  if (verbose) disp('ERROR: Bounds check fail - beam waist too large for LENS1: w1 > d1'); end; 
  errorFlag=errorFlag+1; 
  end; 
if (d1>=w1) & (w1>=(d1*(0.9))) 
  if (verbose) disp('WARNING: Beam waist w1 is within 10% of LENS1 diameter.'); end; 
  warningFlag=warningFlag+1; 
  end; 
 
% Beam waist at lens 2. 
h2=h1*((g-f1)/f1); 
v1=1/((1/f1)-(1/u1)); 
p2=abs(((u2/v1)*p1)); 
w2=2*((abs(p2)/2)+(abs(h2))); 
if (verbose) fprintf('Beam waist at LENS2: %f mm\n', w2); end; 
if (w2>d2) 
  if (verbose) disp('ERROR: Bounds check fail - beam waist too large for LENS2: w2 > d2'); end; 
  errorFlag=errorFlag+1; 
  end; 
if (d2>=w2) & (w2>=(d2*(0.9))) 
  if (verbose) disp('WARNING: Beam waist w2 is within 10% of LENS2 diameter.'); end; 
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  warningFlag=warningFlag+1; 
  end; 
 
% Beam convergence/divergence. 
thetadiv=2*atan((w2-w1)/(2*g)); 
% Determine convergence/divergence of beam. 
if (0>thetadiv) 
  if (verbose) fprintf('Beam convergence of: %f degrees.\n', (abs((thetadiv*180)/pi))); end; 
end; 
if (thetadiv>0) 
  if (verbose) fprintf('Beam divergence of: %f degrees.\n', (abs((thetadiv*180)/pi))); end; 
end; 
if (0==thetadiv) 
  if (verbose) fprintf('Beam is collimated.\n'); end; 
end; 
if (abs(thetadiv)>Tbeam) 
  if (verbose) disp('ERROR: Bounds check fail - divergence/convergence too great: |thetadiv| > 
Tbeam'); end; 
  errorFlag=errorFlag+1; 
  end; 
 
% Beam waist at DOE: Note that the conditions here exclude their being a focal point between 
% LENS1 and LENS2 so we can therefore use simple trig to calculate the beam width. 
wH=w1+2*tan(thetadiv/2)*(g-r); 
if (verbose) fprintf('Beam waist at DOE: %f mm\n', wH); end; 
if (wH>ddoe) 
  if (verbose) disp('ERROR: Bounds check fail - beam waist too large for DOE: wH > ddoe'); end; 
  errorFlag=errorFlag+1; 
  end; 
if (ddoe>=wH) & (wH>=(ddoe*(0.9))) 
  if (verbose) disp('WARNING: Beam waist wH is within 10% of DOE diameter.'); end; 
  warningFlag=warningFlag+1; 
  end; 
 
% Image size. 
hI=(h2*M*f1)/(g-f1); 
if (verbose) fprintf('Image size on image plane: %f mm\n', hI); end; 
 
% Final checks to ensure system OK. 
if (verbose) 
  disp('Calculations complete.'); 
  % If there are no errors then say so. 
  if (errorFlag==0) disp('No errors encountered.');  
  else fprintf('%d error(s) present in system.\n', errorFlag); 
  end; 
  % If there are no warnings then say so. 
  if (warningFlag==0) disp('No warnings issued.');  
  else fprintf('%d warning(s) present in system.\n', warningFlag); 
  end; 
  disp(' '); 
end; 
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Detailed information on minimum and maximum detector sensitivities. 

1111  AAppppeennddiixx  DD  

Detector Vp max (V) Vp min (V) Icc1 min (µA) Icc1 min (µA)
0 3.80 0.80 0.90 4.00
1 4.00 0.70 0.50 4.00
2 3.80 1.00 0.70 4.00
3 4.00 0.80 0.50 3.80
4 4.00 0.80 0.40 4.10
5 3.90 0.50 0.50 4.00
6 3.90 0.70 0.30 3.80
7 3.80 0.50 0.30 4.00

8 4.10 0.80 0.40 4.00
9 4.10 0.80 0.60 4.00

10 4.00 0.80 0.60 4.10
11 4.10 0.80 0.50 3.80
12 4.10 0.90 0.50 3.80
13 4.10 0.80 0.60 4.00
14 4.10 0.80 0.40 3.80
15 4.10 0.80 0.30 3.90

16 4.10 0.90 0.30 3.80
17 4.10 0.80 0.40 3.80
18 4.20 0.80 0.40 3.90
19 4.10 0.80 0.50 4.00
20 4.10 0.90 0.30 3.60
21 4.10 0.80 0.40 4.00
22 4.10 0.80 0.30 4.00
23 4.10 0.90 0.40 3.80

24 4.10 0.80 0.40 4.00
25 4.10 0.80 0.50 3.80
26 4.10 0.80 0.40 4.00
27 4.10 0.80 0.50 4.00
28 4.10 0.80 0.40 3.90
29 4.10 4.10 0.05 0.48
30 4.10 0.80 0.40 4.00
31 4.10 0.80 0.40 4.20

32 4.10 0.80 0.40 4.10
33 4.20 0.90 0.30 4.20
34 4.10 0.80 0.50 3.90
35 4.20 4.20 0.05 0.48
36 4.10 0.90 0.60 4.00
37 4.20 0.90 0.50 4.20
38 4.20 0.90 0.30 3.80
39 4.20 0.90 0.50 3.90
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40 4.30 0.90 0.40 3.90
41 4.30 0.90 0.30 4.20
42 4.20 0.90 0.40 4.20
43 4.20 0.90 0.90 4.10
44 4.30 1.00 0.50 4.20
45 4.20 0.90 0.50 4.20
46 4.20 0.90 0.40 4.10
47 4.20 1.00 0.50 4.10

Error ± 0.10 0.10 0.10 0.10

Minimum 3.80 0.50 0.30 3.60
Average 4.10 0.83 0.46 3.98
Maximum 4.30 1.00 0.90 4.20
St. Dev. 0.12 0.10 0.14 0.14

Average 4.00 0.73 0.36 3.88

Average 4.20 0.93 0.56 4.08

With Minimum Error (-0.1 from all values)

With Maximum Error (+0.1 on all values)
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Detailed results for examination of diffractive optic element (DOE). 

 

 

1122  AAppppeennddiixx  EE  

15
20 3.00E-04 Error (±W) 2.80E-05

2.00E-09 5.10E-03 Error (±A) 1.00E-04

- - - 3.100E-08 3.047E-06 1.060E-07 - -
1.160E-07 1.310E-07 8.100E-08 1.140E-07 3.058E-06 1.820E-07 1.120E-07 7.900E-08
2.906E-06 3.136E-06 2.982E-06 3.006E-06 1.660E-07 3.107E-06 3.120E-06 2.882E-06
6.000E-08 4.800E-08 4.200E-08 1.020E-07 2.973E-06 3.200E-08 6.800E-08 4.200E-08

- - - 3.000E-08 2.985E-06 4.600E-08 - -
- - - 7.300E-08 3.227E-06 7.700E-08 - -

- - - 0.19 18.36 0.64 - -
0.70 0.79 0.49 0.69 18.42 1.10 0.67 0.48

17.51 18.89 17.96 18.11 1.00 18.72 18.80 17.36
0.36 0.29 0.25 0.61 17.91 0.19 0.41 0.25

- - - 0.18 17.98 0.28 - -
- - - 0.44 19.44 0.46 - -

Channel No.
Laser No.
ICC1 Error (±A)

Normalised Against Centre ICC1

Optical Power (W)
Drive Current (A)

Detector Current ICC1 (A)

2
23 3.00E-04 Error (±W) 1.90E-05

2.00E-09 5.30E-03 Error (±A) 1.00E-04

8.600E-08 3.115E-06 1.260E-07 1.110E-07 9.600E-08 7.900E-08 1.040E-07 8.700E-08
3.060E-06 1.580E-07 1.985E-06 3.195E-06 3.020E-06 3.105E-06 2.875E-06 2.333E-06
9.500E-08 1.736E-06 1.070E-07 8.800E-08 5.300E-08 7.200E-08 6.300E-08 5.700E-08
5.300E-08 3.070E-06 4.800E-08 - - - - -
6.000E-08 3.332E-06 8.500E-08 - - - - -
4.900E-08 3.180E-06 8.400E-08 - - - - -

0.54 19.72 0.80 0.70 0.61 0.50 0.66 0.55
19.37 1.00 12.56 20.22 19.11 19.65 18.20 14.77
0.60 10.99 0.68 0.56 0.34 0.46 0.40 0.36
0.34 19.43 0.30 - - - - -
0.38 21.09 0.54 - - - - -
0.31 20.13 0.53 - - - - -

Optical Power (W)
Drive Current (A)

Detector Current ICC1 (A)

Channel No.
Laser No.
ICC1 Error (±A)

Normalised Against Centre ICC1

8
9 3.00E-04 Error (±W) 2.10E-05

2.00E-09 5.50E-03 Error (±A) 1.00E-04

3.100E-06 2.763E-06 2.992E-06 2.910E-06 3.207E-06 2.942E-06 2.978E-06 1.550E-07
3.100E-08 6.400E-08 9.500E-08 6.300E-08 3.900E-08 3.900E-08 1.070E-07 3.057E-06

- - - - - - 7.900E-08 3.016E-06
- - - - - - 6.800E-08 3.258E-06
- - - - - - 6.200E-08 3.154E-06
- - - - - - 3.400E-08 3.729E-06

20.00 17.83 19.30 18.77 20.69 18.98 19.21 1.00
0.20 0.41 0.61 0.41 0.25 0.25 0.69 19.72

- - - - - - 0.51 19.46
- - - - - - 0.44 21.02
- - - - - - 0.40 20.35
- - - - - - 0.22 24.06

Optical Power (W)
Drive Current (A)

Detector Current ICC1 (A)

Channel No.
Laser No.
ICC1 Error (±A)

Normalised Against Centre ICC1
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27
49 3.00E-04 Error (±W) 2.50E-05

2.00E-09 5.10E-03 Error (±A) 1.00E-04

- - - - - - 3.700E-08 2.369E-06
- - - - - - 6.000E-08 2.516E-06
- - - - - - 5.000E-08 2.478E-06
- - - - - - 3.200E-08 2.574E-06

1.210E-07 9.600E-08 7.900E-08 5.200E-08 1.190E-07 8.700E-08 9.400E-08 2.576E-06
2.617E-06 2.474E-06 2.527E-06 2.213E-06 2.701E-06 2.535E-06 2.535E-06 1.320E-07

- - - - - - 0.28 17.95
- - - - - - 0.45 19.06
- - - - - - 0.38 18.77
- - - - - - 0.24 19.50

0.92 0.73 0.60 0.39 0.90 0.66 0.71 19.52
19.83 18.74 19.14 16.77 20.46 19.20 19.20 1.00

Normalised Against Centre ICC1

Optical Power (W)
Drive Current (A)

Detector Current ICC1 (A)

Channel No.
Laser No.
ICC1 Error (±A)

39
56 3.00E-04 Error (±W) 3.40E-05

2.00E-09 5.10E-03 Error (±A) 1.00E-04

2.960E-06 3.200E-08 - - - - - -
3.105E-06 8.600E-08 - - - - - -
2.996E-06 7.400E-08 - - - - - -
3.115E-06 1.080E-07 - - - - - -
3.083E-06 1.950E-07 1.270E-07 4.500E-08 1.020E-07 1.090E-07 8.700E-08 5.300E-08
1.370E-07 3.183E-06 3.190E-06 2.986E-06 2.538E-06 1.787E-06 1.442E-06 1.852E-06

21.61 0.23 - - - - - -
22.66 0.63 - - - - - -
21.87 0.54 - - - - - -
22.74 0.79 - - - - - -
22.50 1.42 0.93 0.33 0.74 0.80 0.64 0.39
1.00 23.23 23.28 21.80 18.53 13.04 10.53 13.52

Channel No.
Laser No.
ICC1 Error (±A)

Normalised Against Centre ICC1

Optical Power (W)
Drive Current (A)

Detector Current ICC1 (A)

40
30 3.00E-04 Error (±W) 2.10E-05

2.00E-09 5.20E-03 Error (±A) 1.00E-04

- 3.500E-08 2.436E-06 9.900E-08 - - - -
8.500E-08 1.010E-07 1.827E-06 1.790E-07 1.100E-07 8.500E-08 7.500E-08 1.010E-07
2.902E-06 2.735E-06 1.710E-07 3.048E-06 3.009E-06 2.893E-06 2.942E-06 2.453E-06
3.600E-08 9.400E-08 2.947E-06 9.500E-08 7.000E-08 1.900E-08 6.100E-08 5.300E-08

- 7.500E-08 2.930E-06 1.800E-08 - - - -
- 6.300E-08 3.158E-06 7.300E-08 - - - -

- 0.20 14.25 0.58 - - - -
0.50 0.59 10.68 1.05 0.64 0.50 0.44 0.59

16.97 15.99 1.00 17.82 17.60 16.92 17.20 14.35
0.21 0.55 17.23 0.56 0.41 0.11 0.36 0.31

- 0.44 17.13 0.11 - - - -
- 0.37 18.47 0.43 - - - -

Normalised Against Centre ICC1

Optical Power (W)
Drive Current (A)

Detector Current ICC1 (A)

Channel No.
Laser No.
ICC1 Error (±A)
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x-7 x-6 x-5 x-4 x-3 x-2 x-1 x x+1 x+2 x+3 x+4 x+5 x+6 x+7 Channel
- - - - - - 19.37 1.00 12.56 20.22 19.11 19.65 18.20 14.77 - 2

20.00 17.83 19.30 18.77 20.69 18.98 19.21 1.00 - - - - - - - 8
- - - 17.51 18.89 17.96 18.11 1.00 18.72 18.80 17.36 - - - - 15

19.83 18.74 19.14 16.77 20.46 19.20 19.20 1.00 - - - - - - - 27
- - - - - - - 1.00 23.23 23.28 21.80 18.53 13.04 10.53 13.52 39
- - - - - 16.97 15.99 1.00 17.82 17.60 16.92 17.20 14.35 - - 40

19.913 18.284 19.224 17.682 20.015 18.280 18.377 1.000 18.085 19.974 18.797 18.461 15.195 12.646 13.518 All

Cross Analysis of Normalised Values ICC1 in X 

Average value

y-5 y-4 y-3 y-2 y-1 y y+1 y+2 y+3 y+4 y+5 Channel
- 20.13 21.09 19.43 10.99 1.00 19.72 - - - - 2

24.06 20.35 21.02 19.46 19.72 1.00 - - - - - 8
- - 19.44 17.98 17.91 1.00 18.42 18.36 - - - 15
- - - - - 1.00 19.52 19.50 18.77 19.06 17.95 27
- - - - - 1.00 22.50 22.74 21.87 22.66 21.61 39
- - 18.47 17.13 17.23 1.00 10.68 14.25 - - - 40

24.058 20.237 20.004 18.501 16.463 1.000 18.168 18.710 20.321 20.862 19.776 All

Cross Analysis of Normalised Values ICC1 in Y

Average value
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Data sheets for amplifier used in amp-board and neural switch card. 

 

1133  AAppppeennddiixx  FF  
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1144  AAppppeennddiixx  GG  

Preq at 50µW Preq at 800µW

Channel VCSEL PL (µW) PU (µW) IU (mA) Ireq (mA) PL (µW) PU (µW) IU (mA) Ireq (mA)
0 21 43 81 4.8 4.379 755 807 9.0 8.475
1 24 28 65 4.6 4.268 753 806 9.2 8.668
2 23 20 60 4.2 3.919 772 823 8.0 7.470
3 16 15 54 4.0 3.758 770 822 7.2 6.720
4 29 25 68 4.2 3.888 777 827 8.0 7.454
5 15 26 74 4.4 4.061 797 849 9.2 8.511
6 22 25 75 4.2 3.872 779 828 6.8 6.314
7 14 35 82 4.6 4.216 766 826 8.2 7.663
8 9 38 87 4.6 4.202 775 817 8.6 8.046
9 12 17 61 3.8 3.542 753 810 6.6 6.200

10 13 41 78 5.0 4.579 789 832 10.2 9.493
11 20 34 91 4.4 4.020 754 801 7.2 6.796
12 11 31 70 4.2 3.870 760 807 8.4 7.905
13 19 19 66 4.0 3.713 788 835 7.4 6.848
14 10 18 65 4.2 3.906 780 813 7.0 6.537
15 28 20 63 4.2 3.910 794 837 7.8 7.204
16 35 16 57 4.4 4.123 792 835 8.6 7.968
17 18 21 76 4.0 3.688 772 835 6.2 5.751
18 17 26 73 4.4 4.063 791 842 9.4 8.722
19 27 25 74 4.2 3.874 791 833 7.8 7.218
20 26 33 82 4.2 3.843 769 815 7.8 7.305
21 25 37 81 4.6 4.211 764 812 9.0 8.453
22 33 45 107 4.4 3.982 763 819 6.8 6.358
23 34 16 51 4.2 3.961 787 836 7.8 7.228
24 44 - 50 3.8 3.589 772 824 6.8 6.335
25 41 25 74 4.4 4.063 773 816 8.2 7.674
26 42 13 51 4.0 3.773 754 805 6.4 6.026
27 49 20 60 4.2 3.919 788 829 8.2 7.611
28 36 15 55 4.2 3.943 - 800 8.0 7.556
29 50 19 62 4.4 4.103 779 821 7.4 6.894
30 43 26 79 4.2 3.863 754 803 6.4 6.033
31 51 18 51 4.2 3.961 755 811 8.4 7.896
32 46 18 59 4.0 3.736 753 804 7.6 7.163
33 52 35 94 4.0 3.637 744 802 6.2 5.849
34 53 18 53 4.2 3.950 763 814 7.6 7.126
35 45 45 72 5.4 4.946 793 832 11.0 10.234
36 54 37 80 4.6 4.213 776 825 9.4 8.781
37 55 23 54 4.6 4.320 786 837 9.0 8.363
38 37 - 50 4.6 4.344 795 846 9.2 8.519
39 56 24 73 4.4 4.067 791 829 7.2 6.656
40 30 17 55 4.2 3.942 776 826 7.8 7.268
41 47 - 50 3.8 3.589 799 844 7.2 6.615
42 48 27 56 4.8 4.494 773 818 9.4 8.802
43 38 30 87 4.0 3.655 761 811 6.8 6.381
44 39 16 55 4.2 3.942 745 812 6.4 6.011
45 40 31 80 4.0 3.662 756 801 7.8 7.362
46 32 46 103 4.4 3.980 795 843 7.4 6.820
47 31 45 101 4.2 3.795 788 830 7.2 6.665
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If a channel was not working properly, no measurements were made. 
 

1155  AAppppeennddiixx  HH  

Detector Total Photocurrent (�A) Detectors Used �A/Detector
0 1.93 - -
1 24.33 12 1.865
2 18.81 12 1.405
3 19.43 11 1.589
4 18.69 12 1.395
5 17.60 11 1.423
6 22.43 12 1.707
7 25.04 12 1.924
8 17.79 12 1.320
9 23.47 12 1.793

10 19.00 12 1.421
11 1.92 - -
12 20.78 12 1.569
13 17.58 11 1.421
14 1.92 - -
15 21.12 12 1.598
16 19.48 12 1.461
17 1.92 - -
18 21.98 12 1.669
19 24.48 11 2.048
20 24.07 12 1.843
21 1.91 - -
22 20.90 12 1.579
23 19.80 12 1.488
24 17.46 11 1.410
25 14.81 11 1.169
26 4.93 11 0.271
27 1.91 - -
28 21.27 11 1.756
29 1.92 - -
30 17.81 11 1.442
31 1.92 - -
32 17.03 11 1.371
33 19.57 11 1.602
34 20.19 11 1.658
35 17.41 - -
36 1.93 - -
37 13.07 10 1.112
38 19.89 11 1.631
39 20.44 11 1.681
40 1.91 - -
41 1.91 - -
42 33.26 12 2.609
43 1.91 - -
44 17.52 12 1.298
45 20.63 11 1.698
46 19.68 12 1.478
47 20.62 12 1.556
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This section contains further results from system testing. 

The next test sequence gave a valid result without optimisation of Vref from 
equation 33. 

Unfortunately, Vref had to be adjusted to 0.62V before a solution was found for 
the next request matrix. 

Vref unadjusted at 0.62V. 

1166  AAppppeennddiixx  II  
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Equation 36

Equation 37
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Vref again worked at 0.62V. 

Still with Vref at 0.62V... 

Vref had to be increased to 0.66V before the network’s output became valid. 

Careful adjustment of Vref to 0.79V gave a good solution.  The induced 
photocurrent was 1.89 to 1.90µA. 
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Equation 39

Equation 40

Equation 41
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Leaving Vref at 0.79V, a valid result was still received. 

Fine adjustment of Vref to 0.79V gave a valid result. 

Adjustment of the above by the addition of one other request (detector 38) 
resulted in an invalid solution.  It was possible to adjust Vref to give a valid 
solution; however, the selection of neurons which remained on proved very 
unstable.  Examination of the system indicated that detector saturation could 
be causing a problem, thus photographic film was inserted which absorbed 
~33% of the optical power throughput.  This resulted in a stable solution after 
slight adjustment of Vref: 

Without adjustment, another valid solution is shown overleaf. 
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Equation 43

Equation 44
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All went well until fewer neurons were requested. 

This solution proved wrong at Vref=0.76V, the reasons for which are explained 
in section 4.7.  Adjustment did reveal that this system could be solved at this 
power level but Vref needed to be 0.91V before it gave a valid solution: a value 
at which all previous tests did not work. 
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Equation 45

Equation 46


