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2 Introduction

2.1 The Assignment Problem

As the complexity of modern communications and computational systems
increases so does the need to develop new techniques which deal with
common assignment problems ([6] and [7]) in situations such as:

e Network and service management.

e Distributed computer systems.

e Work Management systems.

e General scheduling, control or resource allocation problems.

The common assignment problem is essentially optimising task allocation to
all available resources thus maximising throughput. In a distributed computer
system this results in a many process computation being finished in the
shortest possible time whereas, in a network management system, packets
are routed to optimise throughput and minimise blocking.

This report examines specifically the assignment problem in a crossbar switch
for packet routing [11]. These switches are present in many
telecommunication systems and computer networks, one good example being
ATM (Asynchronous Transfer Mode) networks.

2.2 Neural Network Implementation

The problem of packet routing in crossbar switches is known to be analogous
to the travelling salesman problem (TSP). The TSP problem is a renowned
NP complete problem [22] which means that although it can be solved by
linear programming techniques, such as the Murnkes algorithm [23], it is
computationally intensive and complexity grows exponentially as its order
increases. Thus, a simple single processor solution will not provide
satisfactory scalability.

One alternative is to apply a neural network to the TSP problem [8], [9]. The
advantage of a neural net lies in the speed obtained through its inherent
parallel operation, especially when dealing with large problems. Such an
implementation will easily outperform any other method at higher orders of
network size ([1], [4], [5], [6], [10], [14] and [16]) providing a very good, but not
optimal, solution. It has been shown [6] that, at lower orders of network size,
the average solution is within 3% of optimal. However, as the network size
grows this figure improves slowly and begins to approach the optimal solution.

The problem which remains with any neural network solution is its adaptation
to act as a controller for the crossbar switch.




Optoelectronic Neural Networks for Switching

2.3 Implementation Overview

Figure 1 shows a high level
overview of the system. Each
neuron in the Hopfield network Request

connections

Neural Network Crossbar Switch Controller

Hopfield network

controls a single crosspoint
switch. Collectively, the neural
network examines all incoming Sl
packet buffers and, based on {%

the packets’ requested output o
connections, chooses an — >
optimal combination of packets [ icoming
to throughput. The neural | ™™ _
network considers any output —
to be optimal if it maximises the
crossbar switch’'s usage. All Buffers n Outputs
appropriate connections are Figure 1
then made by SeHting Hheir e s cocora soten 2 cpinl mamear 2
crosspoints on the crossbar

switch. This allows the selected packets to be routed through the switch.

Set crosspoints

nxn
crossbar
. switch

Neural networks use simple processing elements where communication
between processors is an integral part of their design. This leads to a highly
interconnected system and typically a fabrication layout nightmare at higher
orders: where neural network control really proves itself.

The Frysice e Therefore, this  project proposes  optical
interconnection of neurons ([17], [18], [21], [28], [33]

me " and [34]). Light has the property that it is non-
interacting in free space and therefore the

interconnects can effectively cross each other

. (figure 2 and [25]). Since the interconnects can

imeraated WREEE Y then be more direct, not only is the amount of

Figure 2 routing reduced but signal skew becomes less of a

Photons have the advantage of being prOblem -
non-interacting in free space.

2.4 Report Outline

The obijective of this report is to present a modified Hopfield neural network as
an implementation method for throughput optimisation in crossbar switches.

The report is divided into 2 main chapters. The first chapter is dedicated to
theory while the second to procedure and results. This report also includes
extensive appendices which will be referred to throughout the text.
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3 Theory

3.1 Crossbar Switches and Notation

A crossbar switch can be simply abstracted as a set of N inputs and N outputs
where each input can be switched to any output.

An example of this can
be seen in figure 3
where, by simply closing
the correct crosspoint
switch, any input line
may be connected to
any output line. This
system has the limitation
that it is mutually
exclusive: any input or
output lines that are in
use cannot be reused.
Thus, two incoming
requests for the same
output line will result in
one becoming blocked

(a) nxn Crossbar Switch (b) Crosspoint Switch

4 ey

n Input Lines
1

(c) Schematic Representation

L n — n
Input_| nxn Output
Lines— Lines
L J

T
n Output Lines

Figure 3

An NxN crossbar switch is shown here at various levels of detail.

(a) Shows an overall connection diagram for a typical crossbar switch.
(b) Details how each of the crosspoint switches work.

(c) Depicts a high level schematic of a crossbar switch.

regardless of the routing algorithm which is used.

To clarify the notation
used throughout the rest
of the report, please
examine figure 4. This
diagram details how a
matrix may be mapped
onto the crossbar
switch, each crosspoint
having a corresponding
matrix element. A
specific element in any
matrix y can therefore
be referenced using yy,
where i is the input line
and j the output line.
Every element in the
matrix can take on one

Matrix Representation of a Crossbar Switch
Columns: j n

........................ _O 0100 ,0

n —¥— O 0 1 O 0 O

Les L4 1000100

e OOOOOORows:i
-+ o 00004,
n Output Lines 4

Figure 4

This diagram shows how a matrix can be mapped onto the crossbar switch thus aiding
representation.

of two values: 1 when there is a connection (or

connection request) or 0 otherwise. The value and legality of the matrix is
dependent on situation. Please examine the matrices shown in equations 1

and 2.
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Neural Processing Element (Neuron) Yy Sigmoid Function

Output
Yi 05

" »
T T T T » %

Inpuis S)}naplic o

1
weights 60 -40 -20 0 20 40 60
Equation 1 Equation 2
This matrix shows a set of requested connections. Input i=1 has This matrix shows a solution or response to the request in equation
requested a connection with output j=3 and both inputs i=2 and =3 1. ltis legal because there are no other connections on the input

have requested a connection to output j=4 rows and output columns which have been selected.

These matrices represent the crossbar switch in figure 4 but from different
points of view. Equation 1 represents a set of desired connections where
three input lines have requested connection to two different output lines: one
request is obviously going to have to wait. Such a matrix is legal regardless of
the combination of zeroes and ones. Equation 2 shows a sample response.
One request has been discarded in favour of another since only one input line
can be connected to one output line at a time. A response is considered to be
legal if there are no other closed switches on the same lines, i.e. all other
elements in the same row and column as the active element must be zero.

The real optimisation problem comes in when you start to consider a system
which has buffered input (as shown in figure 1). In such systems there can be
multiple packets waiting on a = r

single input line for various output | o Commnsis
lines, as can be seen in equation
3. Requests  for  multiple p
connections can be seen in the :
left matrix and the only optimal
solution which maximises
throughput on the right. This
request matrix proves useful for
testing crossbar control systems. Equation 3

O

Neuron

O
<
(@)
)
O

O
O

The left matrix shows a request and the right the only optimal response. This

As an enhancement to packet matixis useful fortesting a system.

systems, each element could be

converted to an integer value representing the number of packets waiting on
each connection. This is, however, not within the scope of this report.

Note that although this description limits itself to square switches with the
same number of inputs as outputs, it is possible to have different numbers of
inputs and outputs. The system built and described in this report has in fact 6
inputs and 8 outputs.

3.2 The Hopfield Neural Network

The key to utilising the parallelism of a neural network is matching the network
as closely as possible to the problem. This section explains the theory behind
the modified Hopfield neural network used in this project but does not give a
generalised description due to space constraints. For more information
please refer to references [12], [29], [30], [31], [32] or [35].
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3.2.1 The Neuron or Node

A Hopfield neural network consists of
a large number of processing
elements called neurons (see figure 5
or references [13] and [35]) which are
highly interconnected to each other in
a specific fashion. Neurons are the
basic building blocks of neural
networks and are an approximation of
the neuron found in nature. A neuron
takes inputs from other neurons’
outputs y; (referenced by i) and
multiplies their strengths by a scalar
weight W; known as the synaptic
weight.

All inputs are summed by the neuron
along with a specific bias to find x;.
The neuron’s output y; can then be
determined using a  monotonic
activation function f{x;), as shown in
equation 4. Here g is used to control
the gain of the sigmoid function, a
higher value resulting in a steeper
transition (as can be seen in figure 6).

The exact form of f{x;) is not
particularly important and in fact any
appropriate non-linear monotonically
increasing function could be used. The
preferred embodiment is, however, the
sigmoid function.

3.2.2 The Updating Rule

Detector  Pre-amp

Neuron Block Diagram

High Pass LowPass Nonlingar
Filter ~ Comparator Filter Select  Amplfier  VCSEL

Figure 5

Detector Board Amp-Board

Neuron Circuit Diagram

+5V

|
Controlled by HP workstation

Figure 6

Sigmoid activation function of a neuron as in equation 4.

Adapting a neural network to any problem requires that an updating rule is
defined and thereby the network interconnection structure. The updating rule
determines the next value that a neuron will take with respect to time based
upon the previous outputs of other neurons, as shown in equation 5:

1maos
..... S

Equation 5

[
I
!
{

where:

x;. is a summation of all inputs to the neuron referenced by ij including the

bias.

vy is the output of a neuron referenced by ;.

A: Optimisation value weighting the input from any element in the same

column.
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B: Optimisation value weighting the input from any element in the same row.
C: Optimisation value representing external bias supplied to each neuron.

and x; is related to y;; using equation 4.

To illustrate this rule further,
Misaligned DOE figure 7 shows an
interconnection diagram for the
modified system. Here the
neuron marked with output y;
has inputs from all the other
neurons in the same row -B.y,
and column -A4.y;,. The
important point to note here is
that the neural network works in
an inhibitory fashion so any
active input will inhibit y;. C/2
describes the external bias
supplied to each neuron which
is not inhibitory.

Figure 7 The idea  behind this

interconnection strategy is that

any active neuron will try and turn all the others off, eventually resulting in only
one of the requests remaining active in each row and column. However, to
demonstrate its ability to find an optimal solution, the example in figure 7
needs to be extended slightly, as in equation 6. The left matrix here
oY represents a request and the right its
O . me | best case solution with y,, switched off.

' Careful consideration leads us to
j} conclude that the network must converge
[ b | to the solution shown here since both y,,
" and y,, are inhibiting y»,, thus resulting in
it being switched off before the others
Equation 6 and essentially losing. If y,, had won in

The left matrix is a request and the right its solution. this case then it would have resulted in a
poor solution since y,, and y,, would be

off: obviously not maximising potential throughput.

It has been shown by Hopfield that with symmetric connections and a
monotonically increasing activation function f(x), the dynamical system
described by the neural network possesses a Lyapunov (energy) function
which continually decreases with time. The existence of such a function
guarantees that the system converges towards equilibrium which is often
referred to as a ‘point attractor’.

The ‘optimisation parameters’ 4, B and C [15] have been determined purely
by trial and error in previous work [24]. If these parameters are not chosen
carefully then equation 5 will converge either very slowly or not at all. A
further possibility is that the system might converge to an invalid solution.

10
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3.2.3 Determination of Optimisation Parameters

It is possible to determine the optimisation
parameters by a more methodical method than
simply trial and error. A solution for equation 5 4
can be found when the system is under conditions of equmbrlum as shown in
equation 7. This results in equation 8.

Equation 7

Xo,ij = _Azn:f(xo,ik)_BZn:f(xo,k/)"‘% Equation 8

k#j k#i
where X, is the value x;; at equilibrium.

Further restricting the parameters, we know that in the final solution to the
switching problem each neuron will settle to either zero or one. Presuming
that a valid solution has been found then there should be at most one active
neuron per row and column. This information allows us to establish that, if ij
is a is a zero position, the equilibrium condition C

reads as in equation 9, where x; denotes the X =—A—B+3 Equation 9
first equilibrium solution.

However, we also know that since we are at equilibrium, the associated y
value must be close to zero and that y tends towards zero as x tends towards
minus infinity (equation 4). Accordingly, we can rewrite equation 9 as the
inequality shown in equation 10: This solution is referred to as the ‘negative
attractor. There must be n’-n positions in
the network satisfying this condition,

C .
—A-B+— Equation 10
presuming a square matrix of 1°. A-B+ 2 =<0 d

The next consideration must be the ij positions which are tending towards
one. In equilibrium, the condition then becomes

that shown in equation 11, where x, represents the x, =— Equation 11
second equilibrium solution. 2

Again using equation 4, it can be easily seen that y tends to one as x tends to
infinity. This allows us to rewrite equation 11 as the

inequality in equation 12 or ‘positive attractor’. This —>>0 Equation 12
condition will have to be satisfied at »n positions in

the network.

The final equilibrium conditions mean that n neurons in the network have
converged to one of the two attractors and n’-n neurons have

converged to the other. Combining .
equations 10 and 12 gives the overall 0<C<2(4+B)  Equation 13
inequality in equation 13.

This equation can be refined since a symmetric
matrix is desired (i.,e. 4=B), as shown in 0<C<44 _
equation 14. Equation 14

3.24 Local Minima

In any system with a continually reducing energy function, there is always a
risk that the system will become trapped in a local minima. In this system, a

11
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local minima can be represented as a solution which satisfies the switching
constraints but is not a global optimal solution. The best way round this
problem is to introduce noise into the system by varying g, as shown in figure
6, between 0.08 and 0.16. This alteration in the activation curve’s gradient is
significant enough to provide successful convergence to a global minimum
during network simulation.

Note that this strategy is not used in the actual system since there is enough
background noise in any real system to make this variation unnecessary.

3.3 System Design

This implementation of a neural network uses optics to interconnect all the
neurons in a configuration as described in section 3.2. This method has the
advantage that a large and complicated interconnect pattern can be realised
with ease.

The optical setup, as illustrated in
figure 8, uses a detector as an
input to each electrical neuron and
a vertical cavity surface emitting
laser (VCSEL) as output. As a
neuron turns on, so does the
appropriate VCSEL. The task of
the diffractive optic element (DOE)
is to disperse the power from an

3 ». active VCSEL so that light is
4(;// directed onto the detectors of
l/ neurons in the same row and
column [26], [27]. Any light incident

1] . e
Electronic on a detector acts in an inhibitory

P manner causing the associated
i 3 neuron to turn off: the higher the
N e 'gure > light intensity, the more likely it is
ach neuron has an associated detector an which act as input an .
8L(J:tgLiJEtLres$]ecti\éely. The DOEddivides any gutputdligbht from a nZuron's that a neuron WI” turn Off Note
to the adjacent neurons’ detectors as indicated above. .

: that the VCSEL array is turned

through 180° in relation to the

detectors. This setup does unfortunately have two major sources of inherent

errors.

Optical System

Detector Array

Diffractive . . . . .

The first problem is the VCSELs. This system is designed so that the output
from each neuron has an equal weight i.e. the output light intensity should be
equal for all lasers. This is obviously not the case with a VCSEL array as it is
almost impossible to fabricate every VCSEL with the exact same output
characteristics. It is, therefore, necessary to calibrate each VCSEL so that the
power output for on and off are the same: both of which must lie above
threshold.

The second is optical alignment. The system needs to be aligned in such a
way that the output from each VCSEL reaches only the correct detector(s).
This involves careful alignment of both VCSEL and detector arrays as well as
any associated lens system.

12
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Discrete electronics were used to implement each neuron. Figure 9 shows a

block diagram representation of the electronic system, whereas figure 10
shows a circuit diagram.

Neuron Block Diagram

High Pass

Low Pass
Detector Pre-amp Filter

Comparator Filter

S e A o A

Nonlinear
Select Amplifier VCSEL

~

Set crosspoint

Q Vp vhp' Vcout vlpf vsel Vinv Y

Figure 9

Block diagram schematic of the implementation of each neuron. Various reference points are marked and will be referred to later on in this report.

These electronics were divided up over a series of different circuit board
modules, each of which will be described later in this report.

Figure 10

Neuron Circuit Diagram

Detector Board

Amp-Board
Detector +S5V R vlpf
2 R
R|] —— =
C, R,
- R
+ + ____F J_
i
= “V =
Vp vhpf Vcout
Neural Switch Card
Voff vstart +7V
Vsel R8 R12
El R5 l___F
R, R, R, Ry,
\ /. C - VCSEL
I . :
Switch iv,,
Enable v =

|
Controlled by HP workstation

13
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4 Procedure and Results

4.1 Network Simulation

The first aspect of the project examined was simulation of the perfect
theoretical case. A pure theoretical model was available as Matlab source
code and is included in Appendix A. Theoretical examination was undertaken
to determine the significance of each of the optimisation parameters shown in
section 3.2 as well as the neuron’s activation function. The following points
were determined from both papers and examination of the model:

e Noise plays a very significant role in this model. As the noise level
increases, the time taken for network stabilisation decreases. However,
when the noise value reaches unity the network becomes unstable and
does not provide a valid or steady solution.

e Network size plays an important role in convergence to a solution: the
larger it is, the longer it takes to converge.

e The value of g should lie within the region 0.08 to 0.16 for optimal
performance.

o fis effectively linked to C as in equation 15. pC~2 Equation 15

e ( should remain within the limits 40 to 150 for optimal operation.
¢ Increasing the value of C encourages the neurons to choose quickly.

e A=B (presuming a symmetric matrix) should be at least ten times greater
than C.

The preferred values used during simulation were 4=B=1250, C=100 and
therefore, from equation 15, 3=0.02 (slightly outwith optimum).

Simulation was also performed of a more realistic model based on figure 9 to
analyse the system when implemented in the proposed manner. The Matlab
code for this can be found in Appendix B.

Both models performed as predicted in the patent application [2] on close
examination.

4.2 Optical Alignment

This system relies heavily on the properties of a diffractive optic element
(DOE [19]) to split up incoming light and cast it onto the appropriate detectors
as shown in figure 8. For optimal results from the DOE, incoming light must
be nearly collimated. However, the VCSEL array outputs light with a
divergence of approximately 8° thus requiring slight focussing. In addition, a
magnification of 6x must be present if 250um spaced VCSELs are to be
focussed onto 1.5mm spaced detectors. It becomes obvious at this point that

14
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a lens system is required to perform collimation and subsequent

Optical Alignment Setup magnification.

ot mae | Figure 11 shows the
(VCSEL)  Lens 1 DOE Lens 2 (Dotestel g

- g=100mm £,=190mm system setup as
— ol I previously proposed in

H reference [20].
H A DOE element fitting
b g —— system s.pecmcatlons
was received at the

Figure 11 beginning  of  this

Optical system as proposed by previous calculations in reference [20]. Drawing not to scale. prOJeCt |t was
inserted into the

system and its output examined by projection onto a Misaligned DOE

grid which was the same size as the detector array.

The image projected onto the image plane was not as X Y

expected and is shown in figure 12. It can be easily - -

seen here that the projected crosses from the test T TT Y

VCSELs do not fit correctly between the grid lines. '

Each element in the system was then carefully g

examined in an effort to find any problematic b

components and eliminate any errors they are be

introducing:

e VCSEL: Moving the VCSEL in relation to Lens 1 Figure 12
alters focussing on the image plane. For a sharp  Siosses ouput fom 4 VOSELS shoud
image there is only one position for the VCSEL —  Petweenteondines

at Lens 1’s focal point.

e Lens 1: Should really only have one position: focussed on the VCSEL
array.

e DOE: The position was found to be extremely sensitive to change.
Movement away from Lens 1 results in an increase in the number of
orders visible between two laser positions: towards and the number of
orders decreases.

e Lens 2: Focuses at a specific distance to give the image plane.
Movement in relation to Lens 1 allows the size of the image on the output
plane to be altered.

The only component sensitive to a change in position was found to be the
DOE. The DOE'’s position was varied between Lens 1 and Lens 2 to try and
find a point at which the image was projected correctly but there was none.
The DOE was then removed from the system and its characteristics examined
more closely. It suddenly became apparent that the DOE’s working distance
was not the same as that used in [20]. The working distance is the distance at
which the DOE correctly projects the desired image and an incorrect value
would explain the problems seen in figure 12. The working distance therefore
had to be re-measured and turned out to be 187mm rather than one of the two
pre-calculated values.

15
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4.3 Revised Lens Model

The calculations made in reference [20] for initial system design were based
around a DOE that had a working distance of exactly either 120mm or
230mm. Since the DOE supplied had a different working distance, it was
necessary to redesign the optical system. The lens system was remodelled
using Matlab V4.2.1c (code in Appendix C) with the previous work as a basis.
Figure 13 shows a drawing of the system setup. This section details the
formulae used to calculate an optimal system setup, however the origins of
each equation are not detailed because of resultant complexity.

Optical Setup

Object Image
(VCSEL) Lens 1 DOE Lens 2 Plane

u,
> 1st Order
h 0/2 P, ‘____-"
15 ——

d
P,

_ |n
IUUNTSSOORE L U """"""""" 28 Oth Order

u, V2

Figure 13

Basic optical design of lens system. All values in this diagram can be calculated given certain known values and simple lens formulae.

4.3.1 Known Parameters

The first task was to determine all known parameters. Using these as a basis,
the system can then be further characterised:

fr: Focal length of Lens 1 (mm).
o Focal length of Lens 2 (mm).
d;: Diameter of Lens 1 (mm).

d>: Diameter of Lens 2 (mm).

L: Working distance of DOE (mm).

g Separation of Lens 1 and Lens 2 (mm).

d: Displacement between 1st and 2nd orders (mm).

M: Magnification desired for entire system (usually negative).
dg.. Diameter of the DOE (mm).

vize: VCSEL size (square) (mm).

Var:  Number of VCSELSs in array x direction.

Va-  Number of VCSELSs in array y direction.

o Divergence in radians.

0. Divergence in radians of beam between Lens 1 and Lens 2.
Ty:  Lens tolerance of f; against u; (percent).

16
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4.3.2 u,: Distance between VCSEL array and LENS 1
u; can be determined using the formula

in equation 16. This value should Soh +f(g- 1) _
essentially be around the same size as u, =—" Equation 16
the focal length of Lens 1. g-hHh-h

4.3.3 Vv,: Lens 2 to Image Plane

To find the distance between Lens 2 and the image plane, we first need to
calculate a few other variables.

S . /s
— Equation 17 M, =
i d T u - fy

Calculation of u, (equation 17) allows us to calculate M, (equation 18). Hence
we can calculate the displacement between DOE and LENS 2, otherwise
known as r (equation 19). Note that » cannot be greater than or equal to g
since this would invalidate the system.

U, =8 - Equation 18

I Equation 20
rEu T Equation 19 I_LT
2 2

Finally we can calculate v, (equation 20).

4.3.4 w,: Beam waist at Lens 1

The next task is to calculate the diameter of the beam at Lens 1: If it is larger
than d; then the system will not work since the image is to large to fit through
Lens 1. First we must calculate the furthest point from the axis to be imaged
(equation 21).

%

\/( Viy-V. )2 Equation 21 B =2u, tan[ij Equation 22
2

However, the beam from the furthest point still diverges and this additional

distance is calculated as in equation 22.

Combining these calculations gives a beam w =2 | 1| +|h1| Equation 23

waist as shown in equation 23.

4.3.5 w,: Beam waist at Lens 2
Analogous to w; above, we can calculate the beam waist at Lens 2.

1
_ g _ﬁ H =
h, = hl( f j Equation 24 R 1} (1} Equation 25
First we must calculate 4, (equation 24) A U
followed by v; (equation 25). This beam
waist also incurs additional size due to | u, Equation 26
divergence, as shown in %, (equation 26). b= 71 B 9

17




Optoelectronic Neural Networks for Switching

To complete the calculation all we need do is calculate equation 27. Once
again, if w, is greater than or equal to d,

the system will not be able to function wz=2(ﬂ+|hz|j Equation 27
correctly. 2

4.3.6 h;: Image Size

To ensure that all calculations are correct, a

quick check can be made by calculating the 5 _ h,M.f,
image size h;.(equation 28): its value should ! (g—ﬁ)
be M times the magnitude of #;.

Equation 28

4.3.7 w,: Beam Waist at DOE

One of the preconditions of this system is that there is not a focal point
between Lens 1 and Lens 2 i.e.

fi+f>>g. This is advantageous in that 6, =2tan_l[u
we can calculate the divergence of 28
the beam 6;, (equation 29) between Lens 1 and Lens 2 using trigonometry. A
diverging beam is represented by a positive value, a converging by a negative
value.

J Equation 29

This allows us to calculate the 0

beam waist at the DOE wy w, =w1+2tan(ﬂj.(g—r) Equation 30
(equation 30). If this value is 2

larger than the DOE’s diameter then the system will again be invalid.

4.3.8 A Distance Model

The Matlab program produced hundreds of values on each test pass as g was
gradually varied, so a method was needed to grade each result. It was
decided that a value which represented the overall optical system size and
also beam divergence between Lens 1 and Lens 2 should be used (Note that
system size was considered to be twice as important as beam divergence).
This allowed the quality of any valid system solution to be estimated while the
program exhaustively tried different lens combinations and varied g.

Aligned System

4.3.9 Lens System Solution

Given tolerances of a maximum system size of 1000
mm, 5 mm minimum distance between components
and maximum deviation of VCSEL to LENS 1
distance u; against focal length f; of 50%, the
program gave the test results shown in section 10.1.
The best distance measure had a solution for
g=15mm with ;=40 mm and /=80 mm. This
solution was implemented and after careful
alignment proved to be a valid solution.

Figure 14

System after re-alignment.

Figure 14 shows a photograph of four VCSELs being
projected onto the detector array as before.
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Although the image quality is poor what is important here is that each of the
projected orders from the VCSELs land exactly on a detector.

V, max (V) | V, min (V) [ ooy min (UA) [ Ioe; min (uA)
Minimum 3.80 0.50 0.30 3.60
4.4 Detector Array Average 4.10 0.83 0.46 3.98
Maximum 4.30 1.00 0.90 4.20
. St. Dev. 0.12 0.10 0.14 0.14
The detector array is a 10 by 10
. . . With Minimum Error (-0.1 from all values)
matrix with a spacing of 1.5 mm s 4.00] 0.73] 0.36] 3.88
between the centre of each detector. With Maximum Error (+0.1 on all values)
. . . . Average | 4.20] 0.93] 0.56| 4.08
Obviously, not the entire matrix is
needed and only the middle 6 rows Figure 15
and 8 columns are actually used.
This section tested the detector array by Minimum Sensitivity of Detectors (uA.

examining the sensitivity range of each
element used. A diagram of the detector
electrical circuit can be seen in figure 10
and is marked as ‘Detector Board’. The
problem associated here was that because
the system was on a pre-fabricated board it
was only possible to take measurements at
specific points. The two values chosen
were:

Moy Jojosjeq

m0.00-0.10 m0.10-0.20 m0.20-0.30 @0.30-0.40 m0.40-0.50
m0.50-0.60 m0.60-0.70 @0.70-0.80 0 0.80-0.90 (J0.90-1.00

Figure 16
I..;; The -current sunk through the ‘gt

photodiode is directly proportional to the Maximum Sensitivity of Detectors
amount of light detected. If the efficiency of [N —
the photodiode array was known it would

be possible to calculate the exact amount

to7

81015 o
g

of light in watts, but unfortunately it was
nOt o 31 é
V,. Voltage output from the detector board 2009
pre-amplifier.

m30.003.49 m3.49-3.58 m3.58-3.67 m3.67-3.76 m3.76-3.85
3.85-3.94 @3.94-4.03 @4.034.12 0 4.12-4.21 04.21-4.30

The experimental setup simply consisted of
a VCSEL’s output being directed through Figure 17
an aperture onto a single detector. By

slowly increasing the power, it was possible to determine the minimum
amount of current which needed to be sunk to start having an effect on the
output voltage. The same method was also used to find the point at which the
detector board saturated and any further difference in incident intensity would
not be detected. This allowed determination of the working range. Figures 16
and 17 graph the results of minimum and maximum photo-currents with
statistical analysis in figure 15. Detailed are results available in Appendix D.

It can be easily seen that, due to a complete lack of sensitivity, detectors 29
and 35 are not working correctly. This result proves significant in that if these
detectors are avoided during testing it will prevent erroneous results. In
addition, it was also detected that the detectors for channels 9 and 10 were
wired round the wrong way.

Note that problems were encountered with the connectors between both
detector board and amp-board. Fortunately, an easy method was found to
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diagnose this problem: the detector’'s output, when measured at the amp-
board, will be seen to float about 2-3V with no light rather than the normal of
~4V.

4.5 The Diffractive Optic Element (DOE)

This project also examined the efficiency of the DOE. Various VCSELs were
chosen at random and a driven such that their output power did not saturate
the detectors. The photo-current sunk by each detector was then measured
thus allowing a comparison of the optical power in each order.

The problem with this examination is that there are many sources of error,
ranging from imprecision in VCSEL and driver output to detector non-linearity.
However, to help reduce channel specific values, the optical powers were
normalised against the 0™ order thus making them more comparable to one
another.

X Profile (Combined) of Normalised Values Y Profile (Combined) of Normalised Values
o 2.50E+01 o 3.00E+01
E| ‘ l 2 o 2508401
2 A £ p 2505401y
g s 200801 I — / S 200E+01 !
£ 3 1s0ev0r A £8° =
TB / \ // T 3 1.50E+01 |
c
& 5 1.00E+01 2 3 1.00E+01 - \ /
c o < O
£ < 5.00E+00 1 E < 500E+00
S S
2 0.00E+00 4—u—u—m = 2 0.00E+00 L{ ‘
TEEYITYEXRTLTEEEEEE ¥5 ¥4 ¥3 y2 1y oyl y2 y3 yrd 5
Order Order
——2 =38 15 27 —m—39 40 —— Average value \ \+2 =8 15 27 —m-39 40 —Average value\
Figure 18 Figure 19
The x axis is the horizontal axis when viewed on the detector array. The on The x axis is the horizontal axis when viewed on the detector array.
order is x and is found at the centre of the cross. The 0" order is x and is found at the centre of the cross.

Figures 18 and 19 show the results taken for a random set of channels
(Appendix E shows more detailed results). These graphs consider the x
orders to be the horizontal line of the DOE output when looking onto the
detector array and y orders the vertical.

The most important line here is the ‘average value’. This is the best indication
of the response of the DOE. It clearly shows that most of the orders seem
fairly stable at 20 times the magnitude of the zero order: except for in the
positive x direction where x+5 and x+6 prove to be consistently low.

4.6 Electronic Modules Figure 20

4.6.1 Amp-Board

This module is designed to amplify the output from the detector

board and also includes a high pass filter to remove any DC |
component from the input signal. Figure 10 shows the layout of W
the amp-board and figure 20 a picture. -

This module was tested by inputting a signal which swept the
entire voltage range output by the stage before it. With
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amplification set at —1, the expected inverted output was received. This test
was repeated for each and every channel and the output monitored.

Testing found a damaged amplifier chip where one of the four operational
amplifiers was not working as expected. The damaged chip was promptly
replaced. This implementation uses the Texas Instruments operational
amplifier LM324N as detailed in Appendix F.

4.6.2 Neural Switch Card

Before testing could commence, it was also necessary to
test and calibrate the neural switch card. Figure 10
shows the neural switch card’s layout and figure 21 a
photograph of the implemented system.

The first task was to set up correct reference voltages, as
defined previously by calculation [3]:

Vstat = VRO = 5.01V +£0.001V
Vioret = VR10 = 2.81V £0.001V
Vot = VR11 = 3.92V £0.001V
Analog 7V = VR12 = 7.000V 0.5V Figure 21
Analog 6V = VR13 = 6.000V +0.001V

Significant instability was noticed on the analog 7V channel and a dry joint
was suspected. Careful soldering in the suspected area lead to its discovery
and after re-soldering the reference voltage became stable:

Analog 7V = VR12 = 7.000V +0.001V

The next step was to calibrate the VCSELs using available optical output
power versus drive current data. A solution was devised where an ammeter
was inserted into the circuit just before the VCSEL to measure drive current.
A square wave was then applied to the channel being measured with a
frequency of 0.5Hz so that the full range of neuron input voltages were swept
(i.e. input voltage between the amp-board’s output limits). By observing the
drive current carefully, minimum and maximum values could be determined,
allowing variable resistors Ry and

R11 (figure 10) to be adjusted to give VCSEL Threshold Difference

the appropriate optical power output. 1000
The optical output powers chosen o Y= 245 94x - 962067
were 0.05mW representing an ‘off’ 700 +
state and 0.8mW for ‘on’. Previous el
data is available on the HP 400 +
Workstation under ‘VSL1:DATAG'. ool
This method of testing also had the 100
advantage that the electrical circuit

for each neuron would be tested
simultaneously.

Optical Output Power
(HW)

4.0 5.0 6.0 7.0 8.0

Drive Current (mA)

—e— Previous Optical Power (UW)
Before adjustment of the system —# Current Optical Power (WW)

|d b . t t —Linear (Current Optical Power (uW))
COU. egln I. lwaS necessary. o —Linear (Previous Optical Power (uW))
verify the validity of the previous
data. The reason for this was that Figure 22
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the VCSELs were originally profiled in a colder environment than that during
the experiment. Any large variance in threshold would indicate a temperature
dependent change in characteristics. One VCSEL was chosen at random and
its optical output power versus drive current curve plotted to find its threshold
(see figure 22). The data on the graph allowed determination of a change in
threshold: all new thresholds are now 94% of the original.

A foreseeable problem was that the resistance of the ammeter would be high
in comparison to that of the VCSEL. The manufacturer’s data and application
of Ohm’s law allowed calculation of minimum (235Q) and maximum (500Q)
VCSEL resistances, dependent on drive current. Measurement of the
ammeter's resistance showed that it was 7.6Q. This is a worst case
difference in resistance of 3.2% which was considered unacceptable. The
range on the ammeter was then changed and one selected which had a
resistance of 1.1Q (0-200mA). This gave an influence of 0.47% worst case
and is well within tolerable limits.

Conversion of all values extracted from the HP workstation was also required
since it only displays the optical power for a given current in 0.2mA steps.
Presuming that the increase between two points is relatively linear, we can
create a formula to calculate the desired optical power output given current
and optical powers of the two points next to it. Note that equation 31 also
takes into account the temperature change, where:

P,., = Power output desired.

Py = Power output from VCSEL with a P, - (pU _ (PU_PLJIUJ
drive current of /. These are the Ji =(3‘91j, 0.2
upper (or higher) values. o414 (PU ) j

P; = Power output from VCSEL with a 0.2

drive current of ;. (not used in this
equation). These are the lower

values.

I,., = Current to be used to drive VCSEL.

Calculation of each value can be found in Appendix G.

Equation 31

This data now allows calibration of the Neural switch card. Systematic
adjustment of R;y) and R;; should swing the VCSEL current between the two
desired values for the appropriate channel. Before calibrating any VCSEL, it
was ensured that both variable resistors were at absolute minimum power out.
Even so, VCSELs began to fail during calibration. Careful examination
revealed that when negative was not connected on the ammeter there was an
AC coupling of ~+1.1V present. Any negative bias is capable of damaging a
VCSEL if it exceeds ~-2V (the tolerance of which is not known): but this
should not be enough to cause considerable damage. A very serious problem
was noticed later: the outputs from the neural switch card take on a -5V
potential when the negative terminal is not connected. Avoidance of this
situation was made to prevent possible damage to any more VCSELs.

Once calibration was completed, the following points were noted:

22



Optoelectronic Neural Networks for Switching

Ch. Notes
0 VCSEL fail. Power outputs calibrated.
3 VCSEL fail. Cannot calibrate: biases set to minimum.

10 Drive current low. 750Q connected in parallel with 470Q2 bias.

16 Detector and VCSEL fail. Cannot calibrate so current set to minimum.
17 VCSEL fail. Calibrated.

18 Drive current low: parallel 1kQ resistor connected.

19 VCSEL fail. Calibrated.

22 VCSEL fail. Cannot calibrate so current set to minimum.

24 VCSEL works but optical power output low. Current calibrated.
34 VCSEL fail. Calibrated.

35 Detector fail.

36 Drive current low: parallel 750k resistor connected.

37 VCSEL fail. Calibrated.

38 Drive current low: parallel 750kQ resistor connected. VCSEL fail.
39 VCSEL fail. Cannot calibrate so current set to minimum.

Some channels are marked as ‘cannot calibrate’. This is not actually the case
as all channels could be calibrated if components were replaced. However,
there is little point in doing this as the VCSELs do not work in the first place so
the currents were set to a minimum so that as little power as necessary was
drawn.

The only task left was to test the system.

4.7 Investigation of System Response

This section examines the complete system where
all components and modules were assembled and
tested. Figure 23 lists all component values with
reference to figure 10 for component integration.

Component Values
R,=100Q [R,=100kQ
Ry=470Q  [R,=1kQ
_ . _ _ Rs=3.3kQ [Rs=100kQ
During testing, all chapnels with failed VCSELs, low R,=100k& |Rs=100kQ
power VCSELs and failed detectors were not used — R 1700 |R. <5000

: : ; ) = o=
these channels are listed in section 4.6.2. Optical = —iro R.=To
alignment was again re-checked to ensure accuracy. C”_:w = C12-_10 =
Three important points were carefully re-checked: 174 271N

e Total VCSEL power output did not saturate Figure 23

detectors in off state.
e V,.rproduced a correct response.
e Amplification on amp-board was set correctly.

It was found that the total power output was too high, so instead of laboriously
re-calibrating every part of the system a beam splitter was simply inserted.

Three channels were chosen at random from the usable selection and their
output examined. It became clear that certain neurons seemed to have
priority over others. Examination of the system showed that the VCSELs did
not seem to be correctly calibrated and switching on some VCSELs induced a
photo-current twice the size of others. The induced photo-currents were
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therefore carefully examined as can be seen in Appendix H. These
measurements proved that the VCSELs were indeed miscalibrated but what
was not clear was by how much. Although not considered before, examining
figure 22 shows that not only is the threshold different but so is the gradient.
This threw into question the accuracy of the calibration data so the optical
power output from a few VCSELs was measured: and found to be drastically
different. For example, channel 7 produced 1.293mW when turned on while
channel 36 produced 2.193mW — both were supposedly calibrated at 0.8mW

and such output powers are beyond VCSEL's 0f0 00100 1 0]
safe operating limits. glo 0001001
Time constraints at this point in the project ¢ ., 160 0 1 000 10
prevented re-calibration of the VCSEL array, 40 0000000
so a set of channels were selected that had a 3200 0 1.0 0 0 1 1
similar induced photo-current level of 1.6pA 400 0 0 0 0 1 0 1]
per detector (£0.1yA), as shown in equation Equation 32
32 All channels which contain a 1 were selected for testing

due to similar VCSEL characteristics.

Testing was performed by requesting a set of

neurons and examining which turned on using the program ‘NETRUN’ on the
HP workstation. If the neurons which turned on indicated a valid and optimal
solution then the test was considered successful. The test data is saved in a
file on the HP workstation under HOP: TSEQ.

Figures 33 and 34 show Request Response

some sample results and ofo 0 0 1 0 0 1 0] 0[0 00 00010
outputs with more detailed 8o 0 0 0 1 0 0 1| 8/0 0 0 0 1 0 0 0
results in Appendix I. 1610 0.0 0 000 0| 160 0 00000 0
During testing it became 240 0 0 0 0 0 0 017240000 0 0 00
obvious that ¥,.; played an 32(0 000000 O 32000000000
important role in as far as 40 0 0 0 0 0 0 0] 4010 0 00 00 0 0]
finding a valid solution is V=078V Equation 33
concerned, sometimes
requiring extremely fine Request ~ Response ]
adjustment. 0|0 001 0010 0|0 0 0 00010
E inati fthesstem800001001 8/0 0001 000
=xamination. o y 160 0 1 0 0 0 1 0| 16/0 0 0 0 0 0 1 0
indicated  that  detector =

: : 24(0 00 0000 0| 240000000 0
saturation could be causing
a problem, thus 340 0 1000 1 11 3200 100 0 11
photographic  film was 200 0.0 0 0 1 0 1] 40[0 0000 1 0 0]
inserted into the system ' =078 —>0.7%F Equation 34

which absorbed ~33% of  vaidsolution to request

throughput power. This did

result in valid solutions for higher power levels, but not for lower ones: V., had
to be adjusted to a specific level before the system would find a solution for
request matrices.

There was obviously something more fundamentally wrong with the system
than simply a power problem. The next stage was to check the amplifier
outputs (V;,,, figure 9) and ensure they were as expected. It was decided to
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monitor two neuron outputs: that of a neuron which was requested but turned
off and that of a neuron which was not requested, nor did it turn on.

A major problem immediately became apparent: when a neuron turns off, it
should fall from ~4V to the same value as the switched off neuron (V4 ~2V)
before switch off time. Unfortunately it does not and will go no lower than
~3V. The first solution was to increase amplification on the amp-board but
this only resulted in the neuron choosing quicker and still going no lower than
~3V.

Various attempts were made to bring the minimum value down from ~3V to
~2V including increasing the amp-board drive voltage from 5V to 10V. This
solution, although helpful, still did not solve the problem.

Next, an attempt was made to adjust the voltage levels of V.. Vogand V.
This started to alter the voltage levels, but because of the circuit design it was
not possible to adjust them to a great enough degree. After trying various
methods it was concluded that without changing component values or
perhaps even re-designing the reference voltage system on the neural switch
card it would not be possible to create a fully working system.

There is also one final point that any further work should consider: the system
seemed very sensitive to any movement of the inserted beamsplitter,
suggesting that the filter is setting up a resonance cavity. Either this
possibility should be investigated or the filter replaced by some other method
of reducing optical throughput.
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5 Conclusion

This report has carefully looked at the theory and implementation of an
optoelectronic neural network for switching and provided some promising
results. It has been shown that, with further work, the optical neural network
can be implemented as proposed. Nevertheless, various problems still need
to be eradicated in the hardware system, one of which being size. Even
though the system is exceedingly efficient at routing, it still faces the problem
of hardware complexity when embedded in large switches.

What makes this system so interesting is its diversity: switching is only one of
its many applications. Essentially, this system could be used to solve any
quadratic assignment problem where time is of the essence. lts ability to
handle larger order problems without serious performance degradation
emphasises the contribution such systems could make to the field of
computing.

5.1 Future Work

There are a few areas which need refinement in this system, but to bring it
into working order the following two recommendations should be carried out:

e Each VCSEL needs to be re-profiled so that the system can be calibrated
correctly.

e The neural switch card needs to be modified so that the reference voltages
can be varied over a larger range.

A further interesting point is temperature sensitivity: in particular that of the
VCSELs. The current VCSEL characteristics differ dramatically from those
measured beforehand — the only change being a temperature difference.
Although it is unlikely that such a large difference was caused by air
temperatures in hot and cold rooms, it is worth eliminating as a possible
cause.
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6 Glossary

AC Alternating Current

ATM Asynchronous Transfer Mode

DC Direct Current

DOE Diffractive Optic Element

TSP Travelling Salesman Problem

VCSEL Vertical Cavity Surface Emitting Laser
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8 Appendix A

This section contains Matlab V4.2.1c for Mac code for theoretical simulation of
the neural network used in this project.

8.1 Theory_model.m

oo

Theoretical Switch Controller
Step by step

oo

function Theory_model ()

oo

Clear all variables, functions and MEX links.
clear all
Set up neuron type.

oo

program = 'Theory';

% Indicate startup and tell user neuron type.

fprintf (' \n')
fprintf (['Running network with ', program, '\n'])

% Set up local variables.

order=10; % Order x order crosspoints.

AQ0=1250; % A=B. Weights to elements in same row or column.
A=AQO*ones (order) ; % Create a matrix of size 'order' where all values are AO.
C=100; % Set optimisation value.

dt=0.1; % Time increment.

Tlpf=3; % LPF time constant.

Tph=10*T1lpf;
noise=1le-3;
slope=0.02;
randn ('seed', cputime);

o

Length of run: 10 times Tlpf.

rms noise amplitude.

For linear neuron (max sigmoid slope for beta = 0.08)
Choose new seed for gaussian noise based on CPU time.

o o

o

oo

request=ones (order) ;
% request=tril (ones (order)) ;
trecord=[0: dt: Tph]

X=zeros (order) ; % Initial states.
Y=zeros (order) ;

Intial requested crosspoints.
Intial requested crosspoints.

oo

;

o

o

% Initialise memory for record of successive states
Xrecord=zeros (length (trecord), order”"2);
Yrecord=zeros (length (trecord), order”2);

o

% Start with initial states: Fill row 1 of Xrecord with contents of X (same for Y).

Xrecord(l,:) = X(:)"';
Yrecord(l,:) = Y(:)"';
% Start timing.

tic

% Repeat for every element in trecord.
for i=2: length(trecord)

% Amplify and truncate each neuron output, then multiply by request.
Y=1in neuron(X, slope).*request;

% Update input voltage to each neuron
X:X+dt/Tlpf.*(—X—A.*Xbariwts(Y)+C/2)+noise.*randn(order);

% Let the user know it's alive.

if (rem((i-1), 50)==0)
fprintf('.\n");

else
fprintf ('.");

end;

% Record successive states.
Xrecord (i, :)=X(:)";
Yrecord (i, :)=Y(:)";

end

o

% Tell the user that your finished.

fprintf (['Finished. Time taken = %5.1f sec.\n'], toc)

fprintf (' \n'")
figure ('Name', 'Final output')

Start_end image (trecord, Yrecord, request)

plot_x

Xmax=max (max (Xrecord)) ;
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% Axis([trecord(l), trecord(length(trecord)), -Xmax, Xmax])
plot_ vy

8.2 Lin _neuron.m

oo

Y=1in_neuron (X, slope)

oo

oo

Each element in X is multiplied by slope and has 0.5 added.
Values then truncated to within [0, 17.

o o

oo

Amplifier with gain = slope acting on elements of X.
Output limits at O, 1.

1lin neuron(0)=0.5.

function Y=1in neuron(X, slope)

oo

oo

Y=max (0, min(1l, 0.5+slope.*X));

8.3 Xbar wts.m

% Ysum(i,j) is the sum of row i + the sum of column j in Y excluding element Y (i,]j).
function Ysum=Xbar_wts (Y)

Ysum=sum(Y') '*ones (1, size(Y, 2))+ones(size(Y, 1), 1)*sum(Y)-2*Y;

8.4 Plot_y.m

% Plot evolution of outputs

figure ('Name', ': outputs')

plot (trecord, Yrecord); % plot Y/time for each neuron
grid

xlabel ('time');

ylabel ('Y'");

8.5 Plot x.m

% Plot evolution of inputs

figure ('Name', [program, ': inputs'])

plot (trecord, Xrecord); % plot X/time for each neuron
grid

xlabel ('time');

ylabel ('X'");

8.6 Start_end_image.m

o

% Show outputs as image

function Start_end_image (trecord, Yrecord, request)
% Create colormap

maplength = 16;

shadel=[0, 0, 0.5]; % 'bottom' shade for colourmap (R, G, B).

shade2=[1, 0, 0]; % 'top' shade for colourmap.

map=[linspace (shadel (1), shade2 (1), maplength) ', linspace (shadel (2), shade2(2), maplength) ',
linspace (shadel (3), shade2(3), maplength)'];

colormap (map)

t=trecord(length (trecord));
order=sqrt (size (Yrecord, 2));
Y=reshape (Yrecord(size (Yrecord, 1), :), order, order);

image (max (Y, request/2)*maplength)

axis square

title(['Request & final state. t = ', num2str(t)]);
drawnow
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9 Appendix B

This section contains Matlab V4.2.1c for Mac code for theoretical simulation of
the electronic and optical system used to implement a neural network.

9.1 Run_Circuit.m

oo

Run circuit runs the Optical Network simulation
Code cleaned up by Keith Symington
Author unknown.

oo

oo

o

% Clear all variables and pack memory.
fprintf ('Initialisation: Memory cleanup...');
clear all;

pack;

fprintf ('done.\n");

% Count flops.

tic

% Define the neuron being used.

program='Neuron8 (linear comparator)';

fprintf (' \n');
fprintf (['Running circuit with ', program, '\n']);

% Set up all global variables.

global Kd Vpb Vpmin Rf Thpf Vcb Gc Vecmax Vemin Vinrange Tlpf Voff Vstart Vref R1 K1 comp noise
% Initialise parameter settings.

Init_circuit;

% Set up initial states.

Y=Ninverter (0,Vstart,Vref,0) .*ones (order) .*K1./R1l;
% Initialise memory for record of successive states.

fprintf ('Initialisation: Memory allocation for recording progress...');
Xrecord=zeros (length (trange), order"2);

Yrecord=zeros (length (trange), order”2);

Vprecord=zeros (length (trange), order”2);
Vhpfrecord=zeros (length (trange), order”2);
Vcoutrecord=zeros (length (trange), order”2);
Vlpfrecord=zeros (length (trange), order”2);
Vinvrecord=zeros (length (trange), order”2);

fprintf ('done.\n");

% Calculate for every value in the time sequence.

for i=1l:length (trange)
% Select time value for appropriate iteration.
t=trange (i) ;

3 Is this the first cycle?

if i>1 dt=t-trange(i-1);

else dt=trange(2)-t;

end

o

% Set enable dependent on iteration number.
enable=enablerange (i) ;

o

Optical Input.

X=H.*Xbar wts (Y)+noise.*randn (order);

% Optical Output.
[Vp,Vhpf,Vcout,Vlpf,Vinv,Y]=neuron8 (X, enable, request,dt) ;

o

% Record successive states.

Xrecord (i, :)=X(:)";
Yrecord (i, :)=Y(:)";
Vprecord (i, :)=Vp(:)"';
Vhpfrecord (i, :)=Vhpf(:)"';
Vcoutrecord (i, :)=Vcout (:)"';
Vlpfrecord(i,:)=Vlpf(:)"';
Vinvrecord (i, :)=Vinv(:)"';

end

o

% Tell the user that the system is finished.
fprintf (['Finished. Time taken = %5.1f sec.\n'], toc)

% Reset tic.
tic;
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% Draw the solution that the system proposed.

figure ('Name', 'Final output')

Out_image

% Plot the voltage characteristics at various stages.

plot_volts

fprintf (['Time taken for plotting = %5.1f sec.\n'], toc)

fprintf (' \n')

9.2 Init _circuit.m

o

% Intialise circuit
% Random seeds.

randn ('seed', cputime);
rand('seed', cputime);

o

Choose new seed for gaussian noise.
Choose new seed for uniform noise.

o

order=6;

dt1l=0.02e-6; % Time increment 1.
dt2=1le-6; % Time increment 2.
Thpf=2.2e-3; % HPF time constant.
Ctol=0; % capacitor tolerance.

o

mean value of LPF time constant.
LPF time constant:
(Varies because of capacitor tolerance.)

Tlpfmean=33e-6;
Tlpf=Tlpfmean* (1+Ctol*rands (order)) ;

o

o

Tphl=10e-6; % Length of settling period.
Tph2=0.3e-3; % Length of run.
Tph3=0; % Length of run.

oo

noise=le-9;
comp noise=0.002;

Noise equivalent power (rms).
Comparator noise.

oo

Kd=0.5; % Detector sensitivity.
Vpb=2.1; % Preamp quiescent.
Vpmin=0.1; % Preamp lower limit.
Rf=1e6; % Transimpedance.

Vcb=2.11; % Comparator quiescent.
Gctol=0; % Comparator gain tolerance.

oo

Gcmean=213;

Gc=Gcmean* (1+Gctol*rands (order)) ;
Vcmax=3.92;

Vemin=0.31;

Voff=Vcmax;

Vstart=Voff- ((Vcmax-Vcmin) /50) / (order-1) ;

Mean comparator gain.
Comparator gain.
Comparator max.
Comparator min.

Off voltage.

Start voltage.

o d° oo o

o

Vref=Vcb; % Inverter reference voltage.
Vthresh=Ninverter (Vcb,Vstart,Vref,1); % Threshold for classifying output.
R1=1.2e3; % Laser drive resistor.

Kltol=0; % Laser A/W tolerance.

Klmean=0.24;

Kl=Klmean* (1+Kltol*rands (order)) ;
Htol=0;

Hmean=2.0e-3;

H=Hmean* (1+Htol*rands (order)) ;

o

Mean Laser A/W.

Laser A/W.

Optical loss tolerance.
Mean optical loss.
Optical loss

o oo o

oo

o

% Requested crosspoints.
request=ones (order) ;

% Alternative requested crosspoints.
% request=tril (ones (order)) ;

oo

Set up trange: Minimum time, step size and maximum time.

Creates an array with an element for each step.

range=[-Tphl: dt2: Tph2+Tph3];

Alternative trange.

trange=[-Tphl: dt2: 0, dtl: dtl: Tph2, Tph2+dt2: dt2: Tph2+Tph3];

oo

ot

oo

o

enablerange is derived from trange: element contains a 1 when time
has gone past zero.
enablerange=trange>0;

o

9.3 Ninverter.m

% Inverter with gated input.

% Used by neuron7 & neuron8.

function Vinv=Ninverter (Vin, Vstart, Vref, enable)
% Inverter output
Vinv=(2*Vref-Vin) .*enable+ (2*Vref-Vstart) .* (~enable) ;

% Alternative inverter output
Vinv=(2*Vref-Vin) .*enable+ (1.5*Vref-0.5*Vstart) .* (~enable) ;

oo
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9.4 Rands.m

oo

rands, rands(m) or rands(m, n)

Generate (arrays of) random numbers uniformly distributed between -1 and +1.
Based on rand.

function R=rands(m, n)

oo

oo

if nargin==

R = 2.*rand-1;
elseif nargin==

R = 2.*rand (m)-1;
elseif nargin ==

R = 2.*rand(m, n)-1;
end

9.5 Xbar wts.m

o

% Ysum(i,j) is the sum of row i + the sum of column j in Y excluding element Y (i,]j).
function Ysum=Xbar_ wts (Y)

Ysum=sum(Y') '*ones (1, size(Y, 2))+ones(size(Y, 1), 1)*sum(Y)-2*Y;

9.6 Out_image.m

% Output image

% Show outputs as image
% Create colormap
maplength = 16;

shadel = [0, 0, 0.5]; % 'bottom' shade for colourmap (R, G, B).
shade2 = [1, 0, 0]; % 'top' shade for colourmap.
map = [linspace(shadel(l), shade2(l), maplength)', linspace(shadel(2), shade2(2), maplength)',

linspace (shadel (3), shade2(3), maplength)'];
colormap (map)

Ymin = min (min(Y));

Yrange = max(max(Y)) - Ymin;
image ((Y-Ymin) *maplength/Yrange)
axis square

if exist('t')

title(['Neuron ouputs. t = ', num2str(t)]);
else

title ('Neuron ouputs');
end
drawnow

9.7 Neuron8.m

a°

neuron8 approximates to real circuit.

The comparator output is gated by the enable matrix.

Q is the optical input.

Y is the optical output.

function [Vp,Vhpf,Vcout,Vlpf,Vinv,Y]=neuron8 (Q,enable, request,dt)

d° oo

a°

global Kd Vpb Vpmin Rf Thpf Tlpf Voff Vstart Vref Rl K1 comp noise

Vp=max (Vpb-Q.*Kd.*Rf, Vpmin);

Vhpf=HPF (Vp, dt./Thpf);

Vcout=1lin comparator (Vhpf);

V1pf=LPF (Vcout, dt./Tlpf)+comp noise.*rands (size (Vc
Vsel=Vlpf.*request + Voff.*(~request);
Vinv=Ninverter (Vsel,Vstart,Vref,enable);
Y=Vinv.*K1l./R1l;

Preamp voltage.

High-pass filter output.
Comparator output.

t)); % Low-pass filter output.
Select outputs.

Inverter output.

Light output.

a0 o0 o0 O oo oe oe

9.8 HPF.m

a°

High-pass CR filter response.

Vin = input voltage

dt = time increment normalised to filter time constant (ie. dt/tau),

Vinit = previous steady-state input voltage (optional). Defaults to Vin.
If Vin and Vinit are vectors or arrays, they are treated as voltages on
parallel filters, not as time series.

Warning: must initialise Vinit or "clear all" if dimensions of Vin change!
function Vout = HPF(Vin, dt, Vinit)

d° o o o o

a°
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% ..so that it can be remembered.
global Vcap_hpf

% Set up array for previous states if necessary.

if nargin==
% Set previous steady-state input voltage if given as a parameter.
Vcap_hpf=Vinit;

elseif ~exist('Vcap_hpf')
% Initialise Vcap_hpf if it doesn't exist already
Vcap_hpf=Vin;

end

% Perform filtering.

Vcap_ hpf=vVin.*dt+Vcap hpf.* (1-dt);

o

Vout=Vin-Vcap hpf; % dt is assumed to be small

9.9 LPF.m

a°

Low-pass RC filter.

Vin = input voltage,

dt = time increment normalised to filter time constant (ie. dt/tau),
Vinit = previous output voltage (optional).

If Vin and Vinit are vectors or arrays, they are treated as voltages on
parallel filters, not as time series.

Warning: must initialise Vinit or clear all if dimensions of Vin change!
function Vout=LPF(Vin, dt, Vinit)

d° o o o o

a°

o

% ..so that it can be remembered.
global Vlast 1pf
if nargin ==
% Set previous output voltage if given.
Vlast 1lpf = Vinit;
elseif ~exist('Vlast 1pf'")
% Initialise Vlast 1lpf if it doesn't exist already
Vlast 1lpf = Vin;
end

Vout = Vin.*dt + Vlast lpf.*(l1-dt); $ dt is assumed to be small
Vlast_1lpf = Vout;

9.10 Lin_comparator.m

o

% inverting comparator with linear range
function [Vout]=1lin_comparator (Vin)

global Vcmax Vcmin Vcb Gc

o

% Calculate output.
Vout=max (Vcmin, min(Vcmax, Vcb - Vin.*Gc));

9.11 Plot volts.m

o

% Plot evolution of circuit voltages and optical input and output.

figure ('Name', 'Input Power (inv. wrt OP)')
plot (trange, Xrecord); % plot X/time for each neuron
grid

xlabel ('time');
ylabel ('input power, W');

figure ('Name', 'Preamp output')
plot (trange, Vprecord); % plot Vp/time for each neuron
grid

xlabel ('time');
ylabel ('preamp, V');

figure ('Name', 'High-pass output')

plot (trange, Vhpfrecord); % plot Vhpf/time for each neuron
grid

xlabel ('time');

ylabel ('high-pass, V');

figure ('Name', 'Comparator output (inv. wrt OP)"'")

plot (trange, Vcoutrecord); % plot Vcout/time for each neuron
grid

xlabel ('time');

ylabel ('comparator, V');

figure ('Name', 'Low-pass output (inv. wrt OP)"'")

o

plot (trange, Vlpfrecord); % plot Vlpf/time for each neuron
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grid
xlabel ('time');
ylabel ('low-pass, V');

figure ('Name', 'Inverter output')

plot (trange, Vinvrecord); % plot Vinv/time for each neuron
grid

xlabel ('time');

ylabel ('inverter, V');

figure ('Name', 'Output Power')

plot (trange, Yrecord); % plot Y/time for each neuron

grid

xlabel ('time');

ylabel ('output power, W');
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10 Appendix C

This appendix contains test results and code in Matlab 4.2.1¢c (Mac) for the
lens system redesign.

10.1 Test Results

Lens Modelling Program V1.00
Written 1998 by Keith Symington

Using first 1 and second 1:
Warnings...
ERROR: System unsolvable.

Using first 1 and second 2:
Warnings...
ERROR: System unsolvable.

Using first 1 and second 3:

Warnings...

Optimal solution for f1=25, £2=80 is g=56.
Distance from VCSEL to LENS1: 19.047619 mm
Distance from LENS1 to DOE: 50.900000 mm
Distance from DOE to LENS2: 5.100000 mm
Distance from LENS2 to Image plane: 194.285714 mm
Total size of system: 269.333333 mm

Beam waist at LENS1: 5.163879 mm

Beam waist at LENS2: 7.628594 mm

Beam divergence of: 2.521339 degrees.

Beam waist at DOE: 7.404128 mm

Image size on image plane: -7.500000 mm
Calculations complete.

No errors encountered.

No warnings issued.

Using first 1 and second 4:
ERROR: System unsolvable.

Using first 1 and second 5:
Warnings...
ERROR: System unsolvable.

Using first 2 and second 1:
Warnings...
ERROR: System unsolvable.

Using first 2 and second 2:
Warnings...
ERROR: System unsolvable.

Using first 2 and second 3:

Warnings...

Optimal solution for f£1=40, £2=80 is g=15.
Distance from VCSEL to LENS1: 29.841270 mm
Distance from LENS1 to DOE: 5.218750 mm
Distance from DOE to LENS2: 9.781250 mm
Distance from LENS2 to Image plane: 201.904762 mm
Total size of system: 246.746032 mm

Beam waist at LENS1: 6.673410 mm

Beam waist at LENS2: 6.268685 mm

Beam convergence of: 1.545839 degrees.
Beam waist at DOE: 6.532599 mm

Image size on image plane: -7.500000 mm
Calculations complete.

No errors encountered.

No warnings issued.

Using first 2 and second 4:

Warnings...

Optimal solution for f1=40, £2=150 is g=131.
Distance from VCSEL to LENS1l: 29.830508 mm
Distance from LENS1 to DOE: 5.255556 mm

Distance from DOE to LENS2: 125.744444 mm
Distance from LENS2 to Image plane: 378.813559 mm
Total size of system: 539.644068 mm

Beam waist at LENS1l: 6.671905 mm
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Beam waist at LENS2: 14.517242 mm

Beam divergence of: 3.430308 degrees.
Beam waist at DOE: 6.986650 mm

Image size on image plane: -7.500000 mm
Calculations complete.

No errors encountered.

No warnings issued.

Using first 2 and second 5:

Warnings...

Optimal solution for £f1=40, £2=190 is g=197.
Distance from VCSEL to LENS1: 29.898990 mm
Distance from LENS1 to DOE: 5.020000 mm
Distance from DOE to LENS2: 191.980000 mm
Distance from LENS2 to Image plane: 477.878788 mm
Total size of system: 704.777778 mm

Beam waist at LENS1: 6.681482 mm

Beam waist at LENS2: 20.951347 mm

Beam divergence of: 4.148456 degrees.

Beam waist at DOE: 7.045110 mm

Image size on image plane: -7.500000 mm
Calculations complete.

No errors encountered.

No warnings issued.

Using first 3 and second 1:
Warnings...
ERROR: System unsolvable.

Using first 3 and second 2:
Warnings...
ERROR: System unsolvable.

Using first 3 and second 3:
Warnings...
ERROR: System unsolvable.

Using first 3 and second 4:
Warnings...
ERROR: System unsolvable.

Using first 3 and second 5:
Warnings...
ERROR: System unsolvable.

Using first 4 and second 1:
Warnings...
ERROR: System unsolvable.

Using first 4 and second 2:
Warnings...
ERROR: System unsolvable.

Using first 4 and second 3:
Warnings...
ERROR: System unsolvable.

Using first 4 and second 4:
Warnings...
ERROR: System unsolvable.

Using first 4 and second 5:
Warnings...
ERROR: System unsolvable.

Using first 5 and second 1:
Warnings...
ERROR: System unsolvable.

Using first 5 and second 2:
Warnings...
ERROR: System unsolvable.

Using first 5 and second 3:
Warnings...
ERROR: System unsolvable.

Using first 5 and second 4:
Warnings...
ERROR: System unsolvable.

Using first 5 and second 5:
Warnings...
ERROR: System unsolvable.

The best combination is lens 2 first and lens 3 second with g at 15 mm.
Lens Model: Program terminated successfully.
»
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10.2 Lens Model.m

Lens Model V1.00
1998 Keith Symington

o0 o° oo

oo

This script processes and executes analysis of optical distances
based on lens focal lengths and the diffractive optic element
working distance.

oo

oo

Initialise variables.

oo

Startup;

% Create a main output window.

figure (...
'Name', 'Lens Modelling Program V1.0',
'Color', [0 0 01,
'"NumberTitle', 'off');

hold on;

% Local record of best system.
bestLensl1=0;
bestLens2=0;
OptimalG=0;
bestDist=0;

% Iterate all systems.
for LENS 1=1:length (lensSet)
for LENS 2=1:length(lensSet)

o

% Set lens 1.

fl=lensSet (1, LENS 1);
dl=lensSet (2, LENS 1);
f2=lensSet (1, LENS 2);

d2=lensSet (2, LENS 2);
disp(sprintf ('Using first %d and second %d:', LENS 1, LENS 2));
% Consider all posibilities in current lens system.
[currentD, TempG]=Search(wsize, wbeam, verbose, fl, dl, f2, d2, L, d, M, Tsize, Tbeam);
if (currentD>bestDist)
bestDist=currentD;
OptimalG=TempG;
bestLensl1=LENS_1;
bestLens2=LENS_2;
end;
end;
end;

% Print the best.

disp (sprintf ('The best combination 1is lens %d first and 1lens %d second with g at %d
mm. ',bestlLensl, bestLens2, OptimalG));

% Say bye.

disp ('Lens Model: Program terminated successfully.');

10.3 Startup.m

% Startup module cleans up and sets some fixed startup parameters.
clear all;

pack;

format compact;

format short;

% Clear screen and print program name.

clc;

disp('Lens Modelling Program V1.00'")

disp('Written 1998 by Keith Symington');

disp(' ");

% Global variables: (not normally available in functions).
lensSet=[25, 40, 80, 150, 190;10, 15, 25, 30, 501];

L=187; % Working distance of DOE in mm.

d=1.5; % Displacement of apparent object in mm.

M=-6; % Magnification for entire system (image is inverted:
% image height over object height is negative)

Tsize=1000; % Maximum system size in mm.

Theam= (pi/180) *10;

oo

Beam divergence/convergence tolerance in radians.

wsize=2; % Weight multiplier which weights the input when calculating the optimal for
size.
wbeam=1; % Weight multiplier which weights the input when calculating the optimal for
beam.

oo

verbose=0; A value other than zero outputs information at every stage.
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10.4 Search.m

oo

Compute performs all the calculations for the opticals model.

It can be run either silently or with output. The advantage of
silent mode is that slower computers do not continually give output
thus slowing things down.

o o

oo

function [bestdistance, OptimalG]=Search(wsize, wbeam, verbose, f1, dl, f2, d2, L, d, M, Tsize,
Tbeam)

% Setup parameters for return from compute.
searchdist=f1+f2;

results=zeros(l, searchdist);
bestdistance=0;

OptimalG=0;

% Search through all values of g.
for counter=l:searchdist

% Compute value for current counter size.

[thetadiv, totalSize, warnings, errors]=Compute (verbose, f£f1, d1, £f2, d2, L, counter, d, M,
Tsize, Tbeam);

% Calculate distance value for current variable.

if ((errors+warnings)==0)

results (1, counter)=((((Tsize-totalSize)/Tsize)*100)*wsize) "2+ ((((Tbeam-

thetadiv) /Tbeam) *100) *wbeam) ~2;

end;

% If this is the best value so far then store it.
if (results(l,counter)>bestdistance)

bestdistance=results(l, counter);

OptimalG=counter;

end;

end;

% Output the lens combination statistics.
if (bestdistance>0)
fprintf ('\nOptimal solution for fl=%d, f2=%d is g=%d.\n', fl, f2, OptimalG);
[thetadiv, totalSize, warnings, errors]=Compute(l, f1, di, £f2, d2, L, OptimalG, d, M, Tsize,
Tbeam) ;
% Best solution measure graph.
title(sprintf ('Best solution with f1=%d and £2=%d at g=%d',fl, £2, OptimalG));
xlabel ('"LENS1 to LENS2 separation in mm (g)');
ylabel ('Distance value');

grid on;
plot (results);
pause (1) ;
else
disp (' ");
disp ('ERROR: System unsolvable.');
disp (' ");
end;

10.5 Compute.m

oo

Compute performs all the calculations for the opticals model.

It can be run either silently or with output. The advantage of
silent mode is that slower computers do not continually give output
thus slowing things down.

o o

o

function [thetadiv, totalSize, warningFlag, errorFlag]=Compute (verbose, fl1, dl1, f2, d2, L, g, d,
M, Tsize, Tbeam)

o

Parameter Check

% Check all set values for an error.

if (g>(£f1+£2)

disp ('ERROR: Bounds check fail - g cannot exceed focal lengths of lenses 1 and 2: fl+f2 >= g');
errorFlag=errorFlag+l;

end;
% Check input values.
if (M>0)
disp ('WARNING: Magnification normally takes a negative value.');
warningFlag=warningFlag+1l;
end;

o

% Fixed System variables: these are not normally altered.

Vsize=0.25; % VCSEL size (square) in mm.

Vnx=8; % Number of VCSELs in x direction.

Vny=6; % Number of VCSELs in y direction.

theta=(pi/180) *8; % Beam divergence from VCSELs in radians.

Tcomp=5; % Minimum distance between components in mm.

Tf1=50; % Maximum percentage by which the VCSEL->LENS1 distance can differ.
ddoe=22; % Diameter of DOE in mm.
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% Error logging.
errorFlag=0;
warningFlag=0;

% VCSEL array to lens 1.

ul=((((£1*£2) /M) +(£1*(g-£2)))/ (g-£2-£1));
if (verbose) fprintf('Distance from VCSEL to LENS1l: %f mm\n', ul); end;
if (0>=ul)
if (verbose) disp('ERROR: Bounds check fail - ul cannot have a negative focal length: ul > 0');
end;
errorFlag=errorFlag+l;
end;
if (Tcomp>ul)
if (verbose) disp ('WARNING: VCSEL too close to LENS1l: Tcomp > ul'); end;
warningFlag=warningFlag+1l;
end;
if (ul>(£1*(1+(T£1/100)))) | ((£1*(1-(T£1/100)))>ul)
if (verbose) disp ('WARNING: VCSEL to LENS1 distance is not within tolerance to fl.'); end;
warningFlag=warningFlag+1l;
end;

o

% Lens 2 to image plane.
u2=g-((fl1*ul)/(ul-£f1));

M2=£2/ (u2-£2);

r=u2-(L/M2); % This is position of DOE.

if (verbose) fprintf('Distance from LENS1 to DOE: %f mm\n', (g-r)); end;
if (0>r)
if (verbose) disp('ERROR: Bounds check fail - r cannot take a negative value: r >= 0'); end;
errorFlag=errorFlag+l;
end;
if (r>=qg)
if (verbose) disp('ERROR: Bounds check fail - DOE must lie between LENS1 and LENS2: g > r');
end;
errorFlag=errorFlag+l;
end;

if (Tcomp>(g-r))
if (verbose) disp ('WARNING: LENS1 too close to DOE: Tcomp > (g-r)'); end;
warningFlag=warningFlag+1l;
end;

if (verbose) fprintf('Distance from DOE to LENS2: %f mm\n', r); end;

if (Tcomp>r)
if (verbose) disp('WARNING: DOE too close to LENS2: Tcomp > r'); end;
warningFlag=warningFlag+1l;

end;
v2=L/(1-(x/u2));
if (verbose) fprintf ('Distance from LENS2 to Image plane: %f mm\n', v2); end;
if (0>v2)
if (verbose) disp('ERROR: Bounds check fail - distance from image plane to LENS2 cannot be

negative: v2 >= 0'); end;
errorFlag=errorFlag+l;

end;
if (Tcomp>v2)
if (verbose) disp('WARNING: LENS2 too close to Image plane: Tcomp > v2'); end;
warningFlag=warningFlag+1l;
end;
totalSize=ul+g+v2;
if (verbose) fprintf ('Total size of system: %f mm\n', totalSize); end;

if (totalSize>Tsize)
if (verbose) disp('ERROR: Bounds check fail - system too large: ul+g+v2 > Tsize'); end;
errorFlag=errorFlag+l;
end;

% Beam waist at lens 1.

hl=sqgrt ((((Vnx*Vsize)"2)+ ((Vny*Vsize)"2)))/2;

pl=2*ul*tan((theta/2)

wl=2* ((abs(pl)/2)+abs(hl));

if (verbose) fprintf ('Beam waist at LENS1l: %f mm\n', wl); end;

if (wl>dl)
if (verbose) disp('ERROR: Bounds check fail - beam waist too large for LENSl: wl > dl'); end;
errorFlag=errorFlag+l;

end;
if (dl>=wl) & (wl>=(d1*(0.9))
if (verbose) disp('WARNING: Beam waist wl is within 10% of LENS1 diameter.'); end;
warningFlag=warningFlag+1l;
end;

o

% Beam waist at lens 2.
h2=hl* ((g-£f1)/£f1l);
v1=1/((1/£1)-(1/ul)
p2:abs(((u2/vl)*pl))
w2=2%* ((abs (p2)/2)+(a
if (verbose) fprlntf
if (w2>d2)

if (verbose) disp('ERROR: Bounds check fail - beam waist too large for LENS2: w2 > d2'); end;

errorFlag=errorFlag+l;

end;
if (d2>=w2) & (w2>=(d2*(0.9))
if (verbose) disp('WARNING: Beam waist w2 is within 10% of LENS2 diameter.'); end;

7

bs (h2)));
('Beam waist at LENS2: %f mm\n', w2); end;
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warningFlag=warningFlag+1l;
end;

% Beam convergence/divergence.
thetadiv=2*atan ((w2-wl)/(2*g));

% Determine convergence/divergence of beam.
if (O0>thetadiv)

if (verbose) fprintf ('Beam convergence of: %$f degrees.\n', (abs((thetadiv*180)/pi))); end;
end;
if (thetadiv>0)

if (verbose) fprintf ('Beam divergence of: %f degrees.\n', (abs((thetadiv*180)/pi))); end;
end;

if (O==thetadiv)
if (verbose) fprintf('Beam is collimated.\n'); end;
end;
if (abs(thetadiv)>Tbeam)
if (verbose) disp('ERROR: Bounds check fail - divergence/convergence too great: |thetadiv| >
Tbeam'); end;
errorFlag=errorFlag+l;
end;

o

Beam waist at DOE: Note that the conditions here exclude their being a focal point between
% LENS1 and LENS2 so we can therefore use simple trig to calculate the beam width.
wH=wl+2*tan (thetadiv/2) * (g-x);

if (verbose) fprintf('Beam waist at DOE: %$f mm\n', wH); end;

if (wH>ddoe)

if (verbose) disp('ERROR: Bounds check fail - beam waist too large for DOE: wH > ddoe'); end;
errorFlag=errorFlag+l;
end;

if (ddoe>=wH) & (wH>=(ddoe*(0.9)))
if (verbose) disp('WARNING: Beam waist wH is within 10% of DOE diameter.'); end;
warningFlag=warningFlag+1l;
end;

% Image size.
hI=(h2*M*f1l)/(g-£f1);
if (verbose) fprintf('Image size on image plane: %f mm\n', hI); end;

oo

Final checks to ensure system OK.
if (verbose)
disp('Calculations complete.');

o

% If there are no errors then say so.

if (errorFlag==0) disp('No errors encountered.');
else fprintf ('%d error(s) present in system.\n', errorFlag);
end;
% If there are no warnings then say so.
if (warningFlag==0) disp('No warnings issued.');
else fprintf ('%d warning(s) present in system.\n', warningFlag);
end;
disp (' ");
end;
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11 Appendix D

Detailed information on minimum and maximum detector sensitivities.

Detector| V, max (V) | V, min (V) | l;cy min (MA) | lccq min (uA)
0 3.80 0.80 0.90 4.00
1 4.00 0.70 0.50 4.00
2 3.80 1.00 0.70 4.00
3 4.00 0.80 0.50 3.80
4 4.00 0.80 0.40 4.10
5 3.90 0.50 0.50 4.00
6 3.90 0.70 0.30 3.80
7 3.80 0.50 0.30 4.00
8 4.10 0.80 0.40 4.00
9 4.10 0.80 0.60 4.00

10 4.00 0.80 0.60 4.10
11 4.10 0.80 0.50 3.80
12 4.10 0.90 0.50 3.80
13 4.10 0.80 0.60 4.00
14 4.10 0.80 0.40 3.80
15 4.10 0.80 0.30 3.90
16 4.10 0.90 0.30 3.80
17 4.10 0.80 0.40 3.80
18 4.20 0.80 0.40 3.90
19 4.10 0.80 0.50 4.00
20 4.10 0.90 0.30 3.60
21 4.10 0.80 0.40 4.00
22 4.10 0.80 0.30 4.00
23 4.10 0.90 0.40 3.80
24 4.10 0.80 0.40 4.00
25 4.10 0.80 0.50 3.80
26 4.10 0.80 0.40 4.00
27 4.10 0.80 0.50 4.00
28 4.10 0.80 0.40 3.90
29 4.10 4.10 0.05 0.48
30 4.10 0.80 0.40 4.00
31 4.10 0.80 0.40 4.20
32 4.10 0.80 0.40 4.10
33 4.20 0.90 0.30 4.20
34 4.10 0.80 0.50 3.90
35 4.20 4.20 0.05 0.48
36 4.10 0.90 0.60 4.00
37 4.20 0.90 0.50 4.20
38 4.20 0.90 0.30 3.80
39 4.20 0.90 0.50 3.90
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40 4.30 0.90 0.40 3.90
41 4.30 0.90 0.30 4.20
42 4.20 0.90 0.40 4.20
43 4.20 0.90 0.90 4.10
44 4.30 1.00 0.50 4.20
45 4.20 0.90 0.50 4.20
46 4.20 0.90 0.40 4.10
47 4.20 1.00 0.50 4.10
[Error+ | 0.10| 0.10] 0.10] 0.10]
Minimum 3.80 0.50 0.30 3.60
Average 4.10 0.83 0.46 3.98
Maximum 4.30 1.00 0.90 4.20
St. Dev. 0.12 0.10 0.14 0.14

With Minimum Error (-0.1 from all values)

With Maximum Error (+0.1 on all values)
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12 Appendix E

Detailed results for examination of diffractive optic element (DOE).

Channel No. 2
Laser No. 23 Optical Power (W) 3.00E-04|Error (+W)[ 1.90E-05
Iccq Error (+A) 2.00E-09 Drive Current (A) 5.30E-03|Error (+tA) | 1.00E-04

Detector Current Igcq (A)
8.600E-08] 3.115E-06] 1.260E-07| 1.110E-07| 9.600E-08| 7.900E-08| 1.040E-07| 8.700E-08
3.060E-06] 1.580E-07] 1.985E-06] 3.195E-06| 3.020E-06| 3.105E-06| 2.875E-06| 2.333E-06
9.500E-08] 1.736E-06] 1.070E-07| 8.800E-08| 5.300E-08] 7.200E-08] 6.300E-08| 5.700E-08
5.300E-08] 3.070E-06{ 4.800E-08 - - - - -
6.000E-08] 3.332E-06 8.500E-08 - - - - -
4.900E-08] 3.180E-06| 8.400E-08 - - - - -

Normalised Against Centre lccq

0.54 19.72 0.80 0.70 0.61 0.50 0.66 0.55
19.37 1.00 12.56 20.22 19.11 19.65 18.20 14.77
0.60 10.99 0.68 0.56 0.34 0.46 0.40 0.36
0.34 19.43 0.30 - - - - -
0.38 21.09 0.54 - - - - -
0.31 20.13 0.53 - - - - -
Channel No. 8
Laser No. 9 Optical Power (W) 3.00E-04|Error (+W)| 2.10E-05
Iccq Error (+A) 2.00E-09 Drive Current (A) 5.50E-03|Error (+tA) | 1.00E-04

Detector Current Iccq (A)
3.100E-06] 2.763E-06] 2.992E-06] 2.910E-06| 3.207E-06] 2.942E-06] 2.978E-06] 1.550E-07
3.100E-08] 6.400E-08] 9.500E-08| 6.300E-08| 3.900E-08| 3.900E-08] 1.070E-07] 3.057E-06
N - - - - -] 7.900E-08| 3.016E-06
_ _ - - - -| 6.800E-08| 3.258E-06
_ - - - - -| 6.200E-08| 3.154E-06
_ - - - - -| 3.400E-08| 3.729E-06

Normalised Against Centre lccq

20.00 17.83 19.30 18.77 20.69 18.98 19.21 1.00
0.20 0.41 0.61 0.41 0.25 0.25 0.69 19.72
- - - - - - 0.51 19.46
- - - - - - 0.44 21.02
- - - - - - 0.40 20.35
- - - - - - 0.22 24.06
Channel No. 15
Laser No. 20 Optical Power (W) 3.00E-04|Error (+W)| 2.80E-05
Iccq Error (+A) 2.00E-09 Drive Current (A) 5.10E-03|Error (+tA) | 1.00E-04

Detector Current Iccq (A)

- - -] 3.100E-08] 3.047E-06| 1.060E-07 - -
1.160E-07| 1.310E-07| 8.100E-08| 1.140E-07 3.058E-06] 1.820E-07| 1.120E-07 7.900E-08
2.906E-06| 3.136E-06| 2.982E-06| 3.006E-06] 1.660E-07] 3.107E-06| 3.120E-06| 2.882E-06
6.000E-08| 4.800E-08| 4.200E-08] 1.020E-07] 2.973E-06/ 3.200E-08| 6.800E-08| 4.200E-08
- - -] 3.000E-08| 2.985E-06| 4.600E-08 - -
- - -| 7.300E-08| 3.227E-06{ 7.700E-08 - -

Normalised Against Centre lccq

- - - 0.19 18.36 0.64 - -
0.70 0.79 0.49 0.69 18.42 110 0.67 0.48
17.51 18.89 17.96 18.11 1.00 18.72 18.80 17.36
0.36 0.29 0.25 0.61 17.91 0.19 0.41 0.25
B B B 0.18 17.98 0.28 - -

- - - 0.44 19.44 0.46 - -
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Channel No. 40
Laser No. 30 Optical Power (W) 3.00E-04|Error (+W)| 2.10E-05
Iccq Error (+A) 2.00E-09 Drive Current (A) 5.20E-03|Error (+tA) | 1.00E-04

Detector Current Igcq (A)
-| 3.500E-08| 2.436E-06] 9.900E-08 - - - -
8.500E-08] 1.010E-07| 1.827E-06] 1.790E-07| 1.100E-07| 8.500E-08] 7.500E-08| 1.010E-07
2.902E-06]| 2.735E-06] 1.710E-07] 3.048E-06| 3.009E-06| 2.893E-06| 2.942E-06| 2.453E-06
3.600E-08] 9.400E-08] 2.947E-06] 9.500E-08] 7.000E-08] 1.900E-08] 6.100E-08| 5.300E-08
-| 7.500E-08| 2.930E-06| 1.800E-08 - - - -
-| 6.300E-08| 3.158E-06| 7.300E-08 - - - -

Normalised Against Centre lccq

- 0.20 14.25 0.58 - - - -
0.50 0.59 10.68 1.05 0.64 0.50 0.44 0.59
16.97 15.99 1.00 17.82 17.60 16.92 17.20 14.35
0.21 0.55 17.23 0.56 0.41 0.11 0.36 0.31
- 0.44 17.13 0.11 - - - -
- 0.37 18.47 0.43 - - - -
Channel No. 39
Laser No. 56 Optical Power (W) 3.00E-04|Error (+W)| 3.40E-05
Iccq Error (+A) 2.00E-09 Drive Current (A) 5.10E-03|Error (+tA) | 1.00E-04

Detector Current Iccq (A)
2.960E-06] 3.200E-08 - - - - - R
3.105E-06] 8.600E-08 - - - - - R
2.996E-06] 7.400E-08 - - - - - R
3.115E-06] 1.080E-07 - - - - - B
3.083E-06| 1.950E-07| 1.270E-07| 4.500E-08| 1.020E-07| 1.090E-07| 8.700E-08| 5.300E-08
1.370E-07] 3.183E-06| 3.190E-06| 2.986E-06| 2.538E-06| 1.787E-06| 1.442E-06| 1.852E-06

Normalised Against Centre lgcq

21.61 0.23 - - - - - -
22.66 0.63 - - - - - -
21.87 0.54 - - - - - -
22.74 0.79 - - - - - -
22.50 1.42 0.93 0.33 0.74 0.80 0.64 0.39

1.00 23.23 23.28 21.80 18.53 13.04 10.53 13.52

Channel No. 27
Laser No. 49 Optical Power (W) 3.00E-04|Error (+W)| 2.50E-05
Iccq Error (+A) 2.00E-09 Drive Current (A) 5.10E-03|Error (+tA) | 1.00E-04

Detector Current Iccq (A)
B _ - - - -| 3.700E-08] 2.369E-06
_ _ - - - -| 6.000E-08| 2.516E-06
B _ - - - -| 5.000E-08] 2.478E-06
_ _ - - - -| 3.200E-08] 2.574E-06
1.210E-07] 9.600E-08| 7.900E-08| 5.200E-08| 1.190E-07| 8.700E-08| 9.400E-08| 2.576E-06
2.617E-06] 2.474E-06| 2.527E-06| 2.213E-06| 2.701E-06| 2.535E-06| 2.535E-06| 1.320E-07

Normalised Against Centre lccq

- - - - - - 0.28 17.95

- - - - - - 0.45 19.06

- - - - - - 0.38 18.77

- - - - - - 0.24 19.50
0.92 0.73 0.60 0.39 0.90 0.66 0.71 19.52
19.83 18.74 19.14 16.77 20.46 19.20 19.20 1.00
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Cross Analysis of Normalised Values Iy in X
X-7 x-6 x-5 x-4 x-3 x2 | x1 X x+1 X+2. x+3 x+4. _I x+5 X+6 x+7 Channel |
= d = d d -| 19.37] 1.00: 12.56] 20.22 19.11 19.65 18.20] 14.77] d 2|
20.00] 17.83 19.30] 18.77] 20.69] 18.%' 19.21 1.00! - - - - - - - BJ
= d = 17.51 18.89 17.96] 18.11 .00, 18.72] 18.80, 17.36] d = = d 5
19.83] 18.74, 19.14] 16.77] 20.46| 19.20] 19.20] .00, - - - - - - -| 7
= d = d d = d .00 23.23] 23.28] 21.80] 18.53 13.04] 10.53] 13.52 9
d = d d 16.97| 15.99] .00, 17.82] 17.60) 16.92] 17.20) 14.35| 5 d 40|

Average value
[ 19.913[ __18.284] 19.224] _17.682] _ 20.015] __18.280] __18.377] ___1.000] _ 18.085] _19.974] _18.797] _18461] _ 15.195] _ 12.646] __13.518] Al

Cross Analysis of Normalised Values lccq in Y

y-5 y-4 y-3 y-2 y-1 y y+1 y+2 y+3 y+4 y+5 Channel
- 20.13 21.09 19.43 10.99 1.00 19.72 - - - - 2
24.06 20.35 21.02 19.46 19.72 1.00 - - - - - 8
- - 19.44 17.98 17.91 1.00 18.42 18.36 - - - 15

- - - - - 1.00 19.52 19.50 18.77 19.06 17.95 27

- - - - - 1.00 22.50 22.74 21.87 22.66 21.61 39

- - 18.47 17.13 17.23 1.00 10.68 14.25 - - - 40

Average value
| 24.058| 20.237] 20.004] 18.501| 16.463] 1.000] 18.168] 18.710] 20.321] 20.862  19.776] Am
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13 Appendix F

Data sheets for amplifier used in amp-board and neural switch card.
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electrical characteristics at specified free-air temperature, Vgc = 5 V (unless otherwise noted)
PARAMETER t £ LM124A LM224A LM324A T
TEST CONDITIONS ™ WN_ TveS  MAX| WN oS wax| Mn vwe§  wax| U
Vee=5Vio 30V, 25°C 2 2 3 2 3
V) Input offset vottage W
0 i N Vig =VicRmin, Vo=14V Full range 4 4 sy "
25°C 10 2 15 2 30
o Input offset current Vo=14V nA
Full range 30 30 75
25°C -50 -15 -80 -15 -100
[ Input bias current Vo=14V nA
Full range -100 =100 —200
259G [ Oto Cto
Common-mode input Vee-18 Vee-15 Veg-18
VicR voltage range Vec =30V ot 0t Ot v
Full range © °© °
Vee-2 Vee-2 Vee-2
RL=2kQ 25°C Vog-1.5 Vee-1.5 Vee-15
VOH High-level output voltage Voo =30V, RL=2kQ Full range 26 26 26 v &
Ve =30V, RL2 10k Full range 27 27 28 27 28 o
VoL Low-level output voltage RLs 10k Full range 20 5 20 5 20| mv [_!e ?}
Large-signal differantial Vog =15V, Vp=1Via 11V,
Ao voltage amplification AL=22ka Fullsange 2 2 5 Vimy @ 5 3
CMRR  Common-made rejection ratio | Vi = Vjgpmin 25°C 70 70 80 65 80 [ § b >
ksvR f:v"g‘g/;‘;‘:ff refection rato 2°C &5 & 100 65 100 B ] a H
[} °
g g:, Vot1/Voz _Crosstatk attenvation =1 kHz 10 20 kHz 25°C 120 120 120 9B = ia g
% E w
=g} Vog=15V.  Vip=1V. 25°C ~20 ~20 Za0  —e0| -20 S %Z 8
=g Vo=0 Full range] -10 -10 -10 A —
-3 —LE% o Outpul current Voo=16V.  Vip=-—1V. 25°C 10 10 20 10 20 m 2
= Vo=15V Full range 5 5 5 &
=3
- g &qw Vip=-1V, Vg =200 mV 25°C 12 12 30 12 30 pA
| N=E z
~ = E <3 | |tos Short-cireuit output current \\:g‘i%‘sv‘ GNDat-5Y, 25°C £40 260 +40 +60 +40  x60| mA
j - =D —
% < : (o} Vo =25V, No load Full range 07 12 0.7 1.2 0.7 1.2
=
[ Supply current (four ampiifiers) . = mA
% R pely current four ameifiers) :g%s:av, Vo=tsv. Fullange 14 3 14 3 14 3
==,
8 - d uJE Tal istics are under open-loop itions with zero de input voltage unless otherwise specified.
o < <—n.; 1 Full range is —55°G fo 125°C for LM124A, —25°C to 85°C for LM224A, and 0°C 1o 70°C for LM324A.
233 O | 8 Alliypical values are at Tp = 25°C.
N =
o T A
w® ==00
5 2%
£ ¥Ag
o N oFHE
Foegd
==3c
-1 3053 ©
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14 Appendix G

Peq at SOpW P.eq at 800pW

Channel [VCSEL P (LW) |Py (uW) [Iy (mA) [Leq (mA) [P (WW) [Py (uW) |Iy (mA) |Leq (mA)
0 21 43 81 4.8 4.379 755 807 9.0 8.475
1 24 28 65 4.6 4.268 753 806 9.2 8.668
2 23 20 60 4.2 3919 772 823 8.0 7.470
4 29 25 68 4.2 3.888 777 827 8.0 7.454
5 15 26 74 4.4 4.061 797 849 9.2 8.511
6 22 25 75 4.2 3.872 779 828 6.8 6.314
7 14 35 82 4.6 4.216 766 826 8.2 7.663
8 9 38 87 4.6 4.202 775 817 8.6 8.046
9 12 17 61 3.8 3.542 753 810 6.6 6.200
10 13 41 78 5.0 4.579 789 832 10.2 9.493
11 20 34 91 4.4 4.020 754 801 7.2 6.796
12 11 31 70 4.2 3.870 760 807 8.4 7.905
13 19 19 66 4.0 3.713 788 835 7.4 6.848
14 10 18 65 4.2 3.906 780 813 7.0 6.537
15 28 20 63 4.2 3.910 794 837 7.8 7.204
16 35 16 57 4.4 4.123 792 835 8.6 7.968
17 18 21 76 4.0 3.688 772 835 6.2 5.751
18 17 26 73 4.4 4.063 791 842 9.4 8.722
20 26 33 82 4.2 3.843 769 815 7.8 7.305
21 25 37 81 4.6 4.211 764 812 9.0 8.453
22 33 45 107 4.4 3.982 763 819 6.8 6.358
23 34 16 51 4.2 3.961 787 836 7.8 7.228
24 44 - 50 3.8 3.589 772 824 6.8 6.335
25 41 25 74 4.4 4.063 773 816 8.2 7.674
26 42 13 51 4.0 3.773 754 805 6.4 6.026
27 49 20 60 4.2 3.919 788 829 8.2 7.611
28 36 15 55 4.2 3.943 - 800 8.0 7.556
29 50 19 62 4.4 4.103 779 821 7.4 6.894
30 43 26 79 4.2 3.863 754 803 6.4 6.033
31 51 18 51 4.2 3.961 755 811 8.4 7.896
32 46 18 59 4.0 3.736 753 804 7.6 7.163
33 52 35 94 4.0 3.637 744 802 6.2 5.849
35 45 45 72 5.4 4.946 793 832 11.0 10.234
36 54 37 80 4.6 4.213 776 825 9.4 8.781
37 55 23 54 4.6 4.320 786 837 9.0 8.363
38 37 - 50 4.6 4.344 795 846 9.2 8.519
39 56 24 73 4.4 4.067 791 829 7.2 6.656
40 30 17 55 4.2 3.942 776 826 7.8 7.268
41 47 - 50 3.8 3.589 799 844 7.2 6.615
42 48 27 56 4.8 4.494 773 818 9.4 8.802
43 38 30 87 4.0 3.655 761 811 6.8 6.381
44 39 16 55 4.2 3.942 745 812 6.4 6.011
45 40 31 80 4.0 3.662 756 801 7.8 7.362
46 32 46 103 4.4 3.980 795 843 7.4 6.820

45 101 W) 3.795 788 830
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15 Appendix H

If a channel was not working properly, no measurements were made.

Detector |Total Photocurrent (uA) |Detectors Used JuA/Detector
0 1.93 - -
1 24.33 12 1.865
2 18.81 12 1.405
3 19.43 11 1.589
4 18.69 12 1.395
5 17.60 11 1.423
6 22.43 12 1.707
7 25.04 12 1.924
8 17.79 12 1.320
9 23.47 12 1.793
10 19.00 12 1.421
11 1.92 - -
12 20.78 12 1.569
13 17.58 11 1.421
14 1.92 - -
15 21.12 12 1.598
16 19.48 12 1.461
17 1.92 - -
18 21.98 12 1.669
19 24.48 11 2.048
20 24.07 12 1.843
21 1.91 - -
22 20.90 12 1.579
23 19.80 12 1.488
24 17.46 11 1.410
25 14.81 11 1.169
26 4.93 11 0.271
27 1.91 - -
28 21.27 11 1.756
29 1.92 - -
30 17.81 11 1.442
31 1.92 - -
32 17.03 11 1.371
33 19.57 11 1.602
34 20.19 11 1.658
35 17.41 - -
36 1.93 - -
37 13.07 10 1.112
38 19.89 11 1.631
39 20.44 11 1.681
40 1.91 - -
41 1.91 - -
42 33.26 12 2.609
43 1.91 - -
44 17.52 12 1.298
45 20.63 11 1.698
46 19.68 12 1.478
47 20.62 12 1.556
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16 Appendix |

This section contains further results from system testing.

The next test sequence gave a valid result without optimisation of V., from
equation 33.

Request Response
0fo 0o 00001 0] 0[000O0O0O0OT1 0]
80 0 00O O OO 8(00O0O0OO0O0O0 O
16/0 0 0 0 0 0 1 0| 16/0 0 0 0 0 0 0 O
2400 00 00000/ 240000000 0
3200 00 0001 0f 32000 000000
400 0 0 0 0 O 0 O] 400 0 0 0 0 0 0 O]
Vig = 0.78Y Equation 35

Unfortunately, V.., had to be adjusted to 0.62V before a solution was found for
the next request matrix.

Request Response
ofo 0 0000 OO 0[0OOOOOOO O]
810 0000 0 0 1 810 000 OO 0O
160000000031600000000
240 0000 OO 0| 240000000 0
3210 0 0 0 0 0 0 1] 3200 00 0 0 0 0 0
400 0 0 0 0O O 1] 400 0 0 0 0 0 0O 1|
Vig =0.62V Equation 36

V..runadjusted at 0.62V.

Request Response
ofo 0 01 0000 0[0OOT1O0O0O0 O]
810 0001 000 810 00O 1L 000
160010000031600100000
24/0 0 000 OO 0| 240000000 0
3210 01 0 0 0 0 0/ 3200 000 0 00 0
400 0 0 0 0 0 0 O] 400 0 0 0 0 0 0 O]
Vig =0.62V Equation 37
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V..ragain worked at 0.62V.

Response
0(f0 0 00O O OO

Request
0/0 0 000 O OO

0

1

0

1

80 0 0OOOO0O
16)0 0 0 0 0 0 0 O

240 0 0 0 0 0 00

3210 0 0 0 0 O

4010 0 0 0 O

&0 0 0 000 0O

1
1

1

0

1

16)0 0 0 0 0 0 0 O
240 0 0 0 0 0 0O
3210 0 0 0 0 O

400 0 0 0 O

Equation 38

V., =0.62V

Still with V,..rat 0.62V...

Response

Request

00000

1

0

1

0|0 0 0 000 0O

&80 0 0OOO O OO
16)0 0 0 0 0 0 0 O
2400 0 0 0 0 0 0O

3210 0

400 0 0 0 O

8000 0OOO O OO

1
1

0 0 01
0

1

1

0j0 0 0 000 0O

160 0 0 0 0 0 O O
240 0 0 0 0 0 0 O

3210 0

400 0 0 0 O

Equation 39

v, =0.62V

V..rhad to be increased to 0.66V before the network’s output became valid.

Response
0(0 0000 O OO

Request
0/0 0 000 O OO

000 O00O0

1

0

1

0

1

&0 0 0 0 0OO OO

16/0 0

240 0 0 0 0 0 0O

3210 0 0 0 0 O

4010 0 0 0 O

00 00O

1

1
1

0 0 0 1
0

1

1

&0 0 0 000 0O

16/]0 0

240 0 0000 00O

3210 0

400 0 0 0 O

Equation 40

V., =0.66V

The induced

Careful adjustment of V.., to 0.79V gave a good solution.

photocurrent was 1.89 to 1.90pA.

Response
0(0 0 00 0O

Request

00 0 0 0 0O

1

00 0O00O0

1

1

0

1

&0 0 0 0 OO OO

16/0 0

240 0 0 0 0 0 0O

3210 0 0 0 0 0 O

4010 0 0 0 O

0

1

000 O00O0

1

1
1

0 0 0 1
0

1

1

&0 0 0 000 0O

16/]0 0

240 0 0000 00O

3210 0

400 0 0 0 O

Equation 41

V., =079V
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Leaving V,.rat 0.79V, a valid result was still received.

Request Response
0fo 0o 00001 0] 0[000O0O0O0OT1 0]
80 0000 0 0 1 8/0 0 000 0 0 1
16/0 0 0 0 0 0 1 0| 16/0 0 0 0 0 0 0 O
2400 00 0000 0| 240000000 0
3200 000001 1| 3200000000 0
4000 0 0 0 0 1 0 1] 400 0 0 0 0 1 0 0]
Vig = 0.7V Equation 42

Fine adjustment of V,.,to 0.79V gave a valid result.

Request Response
0fo 0o o1 00 1 0] 0[00010O0O0 0]
80 0001 0 0 1 8/0 0001 0 0 0
16)0 0 1 0 0 0 1 0| 16/0 0 0 0 0 0 1 0O
2400 00 0000 0| 240000000 0
3200 01 0 0 0 0 1| 320001 000 00
4000 0 0 0 0 1 0 1] 400 0 0 0 0 1 0 0]
Vig = 0.7V Equation 43

Adjustment of the above by the addition of one other request (detector 38)
resulted in an invalid solution. It was possible to adjust V. to give a valid
solution; however, the selection of neurons which remained on proved very
unstable. Examination of the system indicated that detector saturation could
be causing a problem, thus photographic film was inserted which absorbed
~33% of the optical power throughput. This resulted in a stable solution after
slight adjustment of V.

Request Response
0fo 0o o1 00 1 0] 0[000O0O0O0T1 0]
80 0001 0 0 1 8/0 0001 0 0 0
16)0 0 1 0 0 0 1 0| 16/0 0 1 0 0 0 0 0O
2400 00 0000 0| 240000000 0
3200 010 0 0 1 1| 3200 00 00 0 0 1
4000 0 0 0 0 1 0 1] 400 0 0 0 0 1 0 O]
Vg =0.76V Equation 44

Without adjustment, another valid solution is shown overleaf.
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Request Response
00 00000 1 O] (000000 0 1 0]
8/0 00000 0O 00000O0TO0O
1600100000:1600100000
240 00 00O 0 Of 24000000 O0O0
3200 01 0 0 0 1 1| 3200 00 00 0 0 1
400 00 0 0 1 0 1] 40000001 0 0]
Vg =0.76V Equation 45

All went well until fewer neurons were requested.

Request Response
0[0 001 00 1 0] 0[00O0O0O0OTO0T1 0]
8/0 0001 00 1| 8/00 00 T1 00 1
160000000031600000000
2400 00 0 00 O Of 24000000 O0 0
3210 00 0 00 0 0 32010000000 0
400 0 0 0 0 0 0 Of] 400 0 0 0 0 0 0 O]
Vig =0.76V Equation 46

This solution proved wrong at V,.~0.76V, the reasons for which are explained
in section 4.7. Adjustment did reveal that this system could be solved at this
power level but V., needed to be 0.91V before it gave a valid solution: a value
at which all previous tests did not work.

o7



