

Heriot-Watt University St. Andrews University

Optoelectronic Neural Networks for Switching

Abstract

Current software systems suffer from an exponential increase in computational complexity when solving a quadratic assignment problem. Such problems exist in today's telecommunication systems as a network tries to rout calls optimally through its switches to minimise blocking. This project considers the problem and proceeds to propose a solution using the inherent parallelism of a neural network to reduce computation times. In conclusion, a hardware implementation is examined which uses free space optical interconnects to reduce circuit complexity and its performance is closely scrutinised.

MSc Optoelectronics and Laser Devices Project Dissertation

Students Name:	Keith J. Symington
Registration number:	9711710098481
Company/Address:	BT Labs, Martlesham Heath, Ipswich, IP5 7RE.
Company Supervisor:	R. P. Webb
Internal Supervisor:	M. R. Taghizadeh
Date:	8 th September 1998

1 Contents

U

1	Сс	onte	nts2)
2	Int	trod	uction5	;
	2.1	Th	e Assignment Problem5	5
	2.2	Ne	ural Network Implementation5	5
	2.3	Imp	blementation Overview6	5
	2.4	Re	port Outline6	5
3	Th	eor	y7	,
	3.1	Cro	ossbar Switches and Notation7	,
	3.2	The	e Hopfield Neural Network8	3
	3.2	.1	The Neuron or Node)
	3.2	.2	The Updating Rule)
	3.2	.3	Determination of Optimisation Parameters11	I
	3.2	.4	Local Minima11	
	2 2	C 1/4	stem Design 12	,
	5.5	Sy		-
4	Pr	oce	dure and Results14	Ļ
4	Pr 4.1	oce Ne	dure and Results	- -
4	9.3 Pr 4.1 4.2	oce Ne Op	dure and Results	- - -
4	9.3 Pr 4.1 4.2 4.3	OCE Ne Op Re	dure and Results	- - - - -
4	Pr 4.1 4.2 4.3 4.3	OCE Ne Op Re	dure and Results	- + + ;;
4	Pr 4.1 4.2 4.3 4.3 4.3	OCE Ne Op Re .1	dure and Results	- - - - - - - - - - - - - - - - - - -
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u ₁ : Distance between VCSEL array and LENS 1 17 v ₂ : Lens 2 to Image Plane 17	
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u ₁ : Distance between VCSEL array and LENS 1 17 v ₂ : Lens 2 to Image Plane 17 w ₁ : Beam waist at Lens 1 17	
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4 .5	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u ₁ : Distance between VCSEL array and LENS 1 17 v ₂ : Lens 2 to Image Plane 17 w ₁ : Beam waist at Lens 1 17 w ₂ : Beam waist at Lens 2 17	
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4 .5 .6	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u1: Distance between VCSEL array and LENS 1 17 v2: Lens 2 to Image Plane 17 w1: Beam waist at Lens 1 17 w2: Beam waist at Lens 1 17 h1: Image Size 18	
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4 .5 .6 .7	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u ₁ : Distance between VCSEL array and LENS 1 17 v ₂ : Lens 2 to Image Plane 17 w ₁ : Beam waist at Lens 1 17 w ₂ : Beam waist at Lens 2 17 h ₁ : Image Size 18 w _H : Beam Waist at DOE 18	- + + > > > , , ,
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4 .5 .6 .7 .8	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u ₁ : Distance between VCSEL array and LENS 1 17 v ₂ : Lens 2 to Image Plane 17 w ₁ : Beam waist at Lens 1 17 w ₂ : Beam waist at Lens 2 17 h ₁ : Image Size 18 w _H : Beam Waist at DOE 18 A Distance Model 18	
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4 .5 .6 .7 .8 .9	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u1: Distance between VCSEL array and LENS 1 17 v2: Lens 2 to Image Plane 17 w1: Beam waist at Lens 1 17 w2: Beam waist at Lens 2 17 h1: Image Size 18 wH: Beam Waist at DOE 18 A Distance Model 18 Lens System Solution 18	
4	Pr 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	OCE Ne Op Re .1 .2 .3 .4 .5 .6 .7 .8 .9 De	dure and Results 14 twork Simulation 14 tical Alignment 14 vised Lens Model 16 Known Parameters 16 u1: Distance between VCSEL array and LENS 1 17 v2: Lens 2 to Image Plane 17 w1: Beam waist at Lens 1 17 w2: Beam waist at Lens 1 17 h1: Image Size 18 wH: Beam Waist at DOE 18 A Distance Model 18 Lens System Solution 18 tector Array 19	

U

4	.6	Electronic Modules2	:0
	4.6.	1 Amp-Board 2	20
	4.6.	2 Neural Switch Card	21
4	.7	Investigation of System Response	3
5	Со	nclusion2	6
5	.1	Future Work2	:6
5	.2	Acknowledgements2	:6
6	Glo	ossary2	7
7	Bit	bliography2	8
8	Ар	pendix A3	1
8	.1	Theory_model.m3	1
8	.2	Lin_neuron.m3	2
8	.3	Xbar_wts.m	2
8	.4	Plot_y.m	2
8	.5	Plot_x.m	2
8	.6	Start_end_image.m3	2
9	Ар	pendix B3	3
9	.1	Run_Circuit.m	3
9	.2	Init_circuit.m	4
9	.3	Ninverter.m	4
9	.4	Rands.m	5
9	.5	Xbar_wts.m	5
9	.6	Out_image.m3	5
9	.7	Neuron8.m	5
9	.8	HPF.m	5
9	.9	LPF.m	6
9	.10	Lin_comparator.m	6
9	.11	Plot_volts.m	6
10	А	Appendix C	8
1	0.1	Test Results	8

10	.2 Lens_Model.m	40
10	.3 Startup.m	40
10	.4 Search.m	41
10	.5 Compute.m	41
11	Appendix D	. 44
12	Appendix E	. 46
13	Appendix F	. 49
14	Appendix G	. 52
15	Appendix H	. 53
16	Appendix I	. 54

2 Introduction

2.1 The Assignment Problem

As the complexity of modern communications and computational systems increases so does the need to develop new techniques which deal with common assignment problems ([6] and [7]) in situations such as:

- Network and service management.
- Distributed computer systems.
- Work Management systems.
- General scheduling, control or resource allocation problems.

The common assignment problem is essentially optimising task allocation to all available resources thus maximising throughput. In a distributed computer system this results in a many process computation being finished in the shortest possible time whereas, in a network management system, packets are routed to optimise throughput and minimise blocking.

This report examines specifically the assignment problem in a crossbar switch for packet routing [11]. These switches are present in many telecommunication systems and computer networks, one good example being ATM (Asynchronous Transfer Mode) networks.

2.2 Neural Network Implementation

The problem of packet routing in crossbar switches is known to be analogous to the travelling salesman problem (TSP). The TSP problem is a renowned NP complete problem [22] which means that although it can be solved by linear programming techniques, such as the Murnkes algorithm [23], it is computationally intensive and complexity grows exponentially as its order increases. Thus, a simple single processor solution will not provide satisfactory scalability.

One alternative is to apply a neural network to the TSP problem [8], [9]. The advantage of a neural net lies in the speed obtained through its inherent parallel operation, especially when dealing with large problems. Such an implementation will easily outperform any other method at higher orders of network size ([1], [4], [5], [6], [10], [14] and [16]) providing a very good, but not optimal, solution. It has been shown [6] that, at lower orders of network size, the average solution is within 3% of optimal. However, as the network size grows this figure improves slowly and begins to approach the optimal solution.

The problem which remains with any neural network solution is its adaptation to act as a controller for the crossbar switch.

2.3 Implementation Overview

Figure 1 shows a high level overview of the system. Each neuron in the Hopfield network controls a single crosspoint switch. Collectively, the neural network examines all incoming packet buffers and, based on the packets' requested output connections, chooses an optimal combination of packets to throughput. The neural network considers any output to be optimal if it maximises the crossbar switch's usage. All appropriate connections are then made by setting their crosspoints on the crossbar

The proposed system uses a Hopfield neural network to examine all incoming packet buffers and rout packets through the crossbar switch in an optimal manner.

switch. This allows the selected packets to be routed through the switch.

Neural networks use simple processing elements where communication between processors is an integral part of their design. This leads to a highly interconnected system and typically a fabrication layout nightmare at higher orders: where neural network control really proves itself.

Figure 2 Photons have the advantage of being non-interacting in free space.

Therefore, this project proposes optical interconnection of neurons ([17], [18], [21], [28], [33] and [34]). Light has the property that it is non-interacting in free space and therefore the interconnects can effectively cross each other (figure 2 and [25]). Since the interconnects can then be more direct, not only is the amount of routing reduced but signal skew becomes less of a problem.

2.4 Report Outline

The objective of this report is to present a modified Hopfield neural network as an implementation method for throughput optimisation in crossbar switches.

The report is divided into 2 main chapters. The first chapter is dedicated to theory while the second to procedure and results. This report also includes extensive appendices which will be referred to throughout the text.

6

3 Theory

3.1 Crossbar Switches and Notation

A crossbar switch can be simply abstracted as a set of N inputs and N outputs where each input can be switched to any output.

An example of this can be seen in figure 3 where, by simply closing the correct crosspoint switch, any input line may be connected to any output line. This system has the limitation that it is mutually exclusive: any input or output lines that are in use cannot be reused. incomina Thus. two requests for the same output line will result in one becoming blocked

<figure>

(a) Shows an overall connection diagram for a typical crossbar switch.(b) Details how each of the crosspoint switches work.

(c) Depicts a high level schematic of a crossbar switch.

regardless of the routing algorithm which is used.

To clarify the notation used throughout the rest of the report, please examine figure 4. This diagram details how a matrix may be mapped onto the crossbar switch, each crosspoint having a corresponding matrix element. Α specific element in any matrix y can therefore be referenced using y_{ii} , where *i* is the input line and *j* the output line. Every element in the

This diagram shows how a matrix can be mapped onto the crossbar switch thus aiding representation.

matrix can take on one of two values: 1 when there is a connection (or connection request) or 0 otherwise. The value and legality of the matrix is dependent on situation. Please examine the matrices shown in equations 1 and 2.

- **-**

Equation 1

This matrix shows a set of requested connections. Input *i*=1 has requested a connection with output *j*=3 and both inputs *i*=2 and *i*=3 have requested a connection to output *j*=4.

This matrix shows a solution or response to the request in equation 1. It is legal because there are no other connections on the input rows and output columns which have been selected.

These matrices represent the crossbar switch in figure 4 but from different points of view. Equation 1 represents a set of desired connections where three input lines have requested connection to two different output lines: one request is obviously going to have to wait. Such a matrix is legal regardless of the combination of zeroes and ones. Equation 2 shows a sample response. One request has been discarded in favour of another since only one input line can be connected to one output line at a time. A response is considered to be legal if there are no other closed switches on the same lines, i.e. all other elements in the same row and column as the active element must be zero.

The real optimisation problem comes in when you start to consider a system which has buffered input (as shown in figure 1). In such systems there can be

multiple packets waiting on a single input line for various output lines, as can be seen in equation Requests 3. for multiple connections can be seen in the left matrix and the only optimal which solution maximises throughput on the right. This request matrix proves useful for testing crossbar control systems.

As an enhancement to packet systems, each element could be

Equation 3

The left matrix shows a request and the right the only optimal response. This matrix is useful for testing a system.

converted to an integer value representing the number of packets waiting on each connection. This is, however, not within the scope of this report.

Note that although this description limits itself to square switches with the same number of inputs as outputs, it is possible to have different numbers of inputs and outputs. The system built and described in this report has in fact 6 inputs and 8 outputs.

3.2 The Hopfield Neural Network

The key to utilising the parallelism of a neural network is matching the network as closely as possible to the problem. This section explains the theory behind the modified Hopfield neural network used in this project but does not give a generalised description due to space constraints. For more information please refer to references [12], [29], [30], [31], [32] or [35].

3.2.1 The Neuron or Node

A Hopfield neural network consists of large number of processing а elements called neurons (see figure 5 or references [13] and [35]) which are highly interconnected to each other in a specific fashion. Neurons are the basic buildina blocks of neural networks and are an approximation of the neuron found in nature. A neuron takes inputs from other neurons' outputs y_{ii} (referenced by ij) and multiplies their strengths by a scalar weight W_{ii} known as the synaptic weight.

All inputs are summed by the neuron along with a specific bias to find x_{ij} . The neuron's output y_{ij} can then be determined using a monotonic activation function $f(x_{ij})$, as shown in equation 4. Here β is used to control the gain of the sigmoid function, a higher value resulting in a steeper transition (as can be seen in figure 6).

The exact form of $f(x_{ij})$ is not particularly important and in fact any appropriate non-linear monotonically increasing function could be used. The preferred embodiment is, however, the sigmoid function.

Figure 5

The building block of any neural network: the neuron.

Sigmoid activation function of a neuron as in equation 4.

3.2.2 The Updating Rule

Adapting a neural network to any problem requires that an updating rule is defined and thereby the network interconnection structure. The updating rule determines the next value that a neuron will take with respect to time based upon the previous outputs of other neurons, as shown in equation 5:

Equation 5

where:

 x_{ij} : is a summation of all inputs to the neuron referenced by ij including the bias.

 y_{ij} : is the output of a neuron referenced by ij.

A: Optimisation value weighting the input from any element in the same column.

B: Optimisation value weighting the input from any element in the same row.

C: Optimisation value representing external bias supplied to each neuron.

and x_{ij} is related to y_{ij} using equation 4.

To illustrate this rule further, figure 7 shows an interconnection diagram for the modified system. Here the neuron marked with output y_{ii} has inputs from all the other neurons in the same row $-B.v_{2i}$ and column $-A.y_{i2}$. The important point to note here is that the neural network works in an inhibitory fashion so any active input will inhibit y_{ii} . C/2 describes the external bias supplied to each neuron which is not inhibitory.

Figure 7

The idea behind this interconnection strategy is that

any active neuron will try and turn all the others off, eventually resulting in only one of the requests remaining active in each row and column. However, to demonstrate its ability to find an optimal solution, the example in figure 7 needs to be extended slightly, as in equation 6. The left matrix here

Equation 6 The left matrix is a request and the right its solution. represents a request and the right its best case solution with y_{22} switched off. Careful consideration leads us to conclude that the network must converge to the solution shown here since both y_{24} and y_{42} are inhibiting y_{22} , thus resulting in it being switched off before the others and essentially losing. If y_{22} had won in this case then it would have resulted in a poor solution since y_{24} and y_{42} would be

off: obviously not maximising potential throughput.

It has been shown by Hopfield that with symmetric connections and a monotonically increasing activation function f(x), the dynamical system described by the neural network possesses a Lyapunov (energy) function which continually decreases with time. The existence of such a function guarantees that the system converges towards equilibrium which is often referred to as a 'point attractor'.

The 'optimisation parameters' A, B and C [15] have been determined purely by trial and error in previous work [24]. If these parameters are not chosen carefully then equation 5 will converge either very slowly or not at all. A further possibility is that the system might converge to an invalid solution.

3.2.3 Determination of Optimisation Parameters

It is possible to determine the optimisation parameters by a more methodical method than simply trial and error. A solution for equation 5

Equation 7

Equation 8

can be found when the system is under conditions of equilibrium, as shown in equation 7. This results in equation 8.

$$x_{0,ij} = -A \sum_{k \neq j}^{n} f(x_{0,ik}) - B \sum_{k \neq i}^{n} f(x_{0,kj}) + \frac{C}{2}$$

where $x_{0,ij}$ is the value x_{ij} at equilibrium.

Further restricting the parameters, we know that in the final solution to the switching problem each neuron will settle to either zero or one. Presuming that a valid solution has been found then there should be at most one active neuron per row and column. This information allows us to establish that, if ij is a is a zero position, the equilibrium condition

reads as in equation 9, where x_1 denotes the $x_1 = -A - B + \frac{C}{2}$ Equation 9 first equilibrium solution.

However, we also know that since we are at equilibrium, the associated y value must be close to zero and that y tends towards zero as x tends towards minus infinity (equation 4). Accordingly, we can rewrite equation 9 as the inequality shown in equation 10: This solution is referred to as the 'negative attractor'. There must be n^2 -n positions in

the network satisfying this condition, $-A-B+\frac{C}{2} << 0$ Equation 10 presuming a square matrix of n^2 .

The next consideration must be the *ij* positions which are tending towards one. In equilibrium, the condition then becomes that shown in equation 11, where x_2 represents the $x_2 = \frac{C}{2}$ Equation 11 second equilibrium solution.

Again using equation 4, it can be easily seen that *y* tends to one as *x* tends to infinity. This allows us to rewrite equation 11 as the inequality in equation 12 or 'positive attractor'. This $\frac{C}{2} >> 0$ Equation 12 condition will have to be satisfied at *n* positions in the network.

The final equilibrium conditions mean that *n* neurons in the network have converged to one of the two attractors and n^2 -*n* neurons have

converged to the other. Combining equations 10 and 12 gives the overall 0 < C < 2(A+B) Equation 13 inequality in equation 13.

This equation can be refined since a symmetric matrix is desired (i.e. A=B), as shown in 0 < C < 4A equation 14.

Equation 14

3.2.4 Local Minima

In any system with a continually reducing energy function, there is always a risk that the system will become trapped in a local minima. In this system, a

local minima can be represented as a solution which satisfies the switching constraints but is not a global optimal solution. The best way round this problem is to introduce noise into the system by varying β , as shown in figure 6, between 0.08 and 0.16. This alteration in the activation curve's gradient is significant enough to provide successful convergence to a global minimum during network simulation.

Note that this strategy is not used in the actual system since there is enough background noise in any real system to make this variation unnecessary.

3.3 System Design

This implementation of a neural network uses optics to interconnect all the neurons in a configuration as described in section 3.2. This method has the advantage that a large and complicated interconnect pattern can be realised with ease.

Each neuron has an associated detector and VCSEL which act as input and output respectively. The DOE divides any output light from a neuron's VCSEL to the adjacent neurons' detectors as indicated above.

The optical setup, as illustrated in figure 8, uses a detector as an input to each electrical neuron and a vertical cavity surface emitting laser (VCSEL) as output. As a neuron turns on, so does the appropriate VCSEL. The task of the diffractive optic element (DOE) is to disperse the power from an active VCSEL so that light is directed onto the detectors of neurons in the same row and column [26], [27]. Any light incident on a detector acts in an inhibitory manner causing the associated neuron to turn off: the higher the light intensity, the more likely it is that a neuron will turn off. Note that the VCSEL array is turned through 180° in relation to the

detectors. This setup does unfortunately have two major sources of inherent errors.

The first problem is the VCSELs. This system is designed so that the output from each neuron has an equal weight i.e. the output light intensity should be equal for all lasers. This is obviously not the case with a VCSEL array as it is almost impossible to fabricate every VCSEL with the exact same output characteristics. It is, therefore, necessary to calibrate each VCSEL so that the power output for on and off are the same: both of which must lie above threshold.

The second is optical alignment. The system needs to be aligned in such a way that the output from each VCSEL reaches only the correct detector(s). This involves careful alignment of both VCSEL and detector arrays as well as any associated lens system.

Discrete electronics were used to implement each neuron. Figure 9 shows a block diagram representation of the electronic system, whereas figure 10 shows a circuit diagram.

Block diagram schematic of the implementation of each neuron. Various reference points are marked and will be referred to later on in this report.

These electronics were divided up over a series of different circuit board modules, each of which will be described later in this report.

4 **Procedure and Results**

4.1 Network Simulation

The first aspect of the project examined was simulation of the perfect theoretical case. A pure theoretical model was available as Matlab source code and is included in Appendix A. Theoretical examination was undertaken to determine the significance of each of the optimisation parameters shown in section 3.2 as well as the neuron's activation function. The following points were determined from both papers and examination of the model:

- Noise plays a very significant role in this model. As the noise level increases, the time taken for network stabilisation decreases. However, when the noise value reaches unity the network becomes unstable and does not provide a valid or steady solution.
- Network size plays an important role in convergence to a solution: the larger it is, the longer it takes to converge.
- The value of β should lie within the region 0.08 to 0.16 for optimal performance.
- β is effectively linked to *C* as in equation 15. $\beta . C \approx 2$ Equation 15
- *C* should remain within the limits 40 to 150 for optimal operation.
- Increasing the value of *C* encourages the neurons to choose quickly.
- *A*=*B* (presuming a symmetric matrix) should be at least ten times greater than *C*.

The preferred values used during simulation were A=B=1250, C=100 and therefore, from equation 15, $\beta=0.02$ (slightly outwith optimum).

Simulation was also performed of a more realistic model based on figure 9 to analyse the system when implemented in the proposed manner. The Matlab code for this can be found in Appendix B.

Both models performed as predicted in the patent application [2] on close examination.

4.2 **Optical Alignment**

This system relies heavily on the properties of a diffractive optic element (DOE [19]) to split up incoming light and cast it onto the appropriate detectors as shown in figure 8. For optimal results from the DOE, incoming light must be nearly collimated. However, the VCSEL array outputs light with a divergence of approximately 8° thus requiring slight focussing. In addition, a magnification of 6x must be present if 250µm spaced VCSELs are to be focussed onto 1.5mm spaced detectors. It becomes obvious at this point that

a lens system is required to perform collimation and subsequent

system and its output examined by projection onto a grid which was the same size as the detector array. The image projected onto the image plane was not as expected and is shown in figure 12. It can be easily seen here that the projected crosses from the test VCSELs do not fit correctly between the grid lines. Each element in the system was then carefully examined in an effort to find any problematic components and eliminate any errors they are be introducing:

 VCSEL: Moving the VCSEL in relation to Lens 1 alters focussing on the image plane. For a sharp image there is only one position for the VCSEL – at Lens 1's focal point.

ation and subsequent magnification.

Figure 11 shows the system setup as previously proposed in reference [20].

A DOE element fitting system specifications was received at the beginning of this project. It was inserted into the

Figure 12 Crosses output from 4 VCSELs should overlap perfectly with spots lying between the grid lines.

- Lens 1: Should really only have one position: focussed on the VCSEL array.
- DOE: The position was found to be extremely sensitive to change. Movement away from Lens 1 results in an increase in the number of orders visible between two laser positions: towards and the number of orders decreases.
- Lens 2: Focuses at a specific distance to give the image plane. Movement in relation to Lens 1 allows the size of the image on the output plane to be altered.

The only component sensitive to a change in position was found to be the DOE. The DOE's position was varied between Lens 1 and Lens 2 to try and find a point at which the image was projected correctly but there was none. The DOE was then removed from the system and its characteristics examined more closely. It suddenly became apparent that the DOE's working distance was not the same as that used in [20]. The working distance is the distance at which the DOE correctly projects the desired image and an incorrect value would explain the problems seen in figure 12. The working distance therefore had to be re-measured and turned out to be 187mm rather than one of the two pre-calculated values.

4.3 Revised Lens Model

The calculations made in reference [20] for initial system design were based around a DOE that had a working distance of exactly either 120mm or 230mm. Since the DOE supplied had a different working distance, it was necessary to redesign the optical system. The lens system was remodelled using Matlab V4.2.1c (code in Appendix C) with the previous work as a basis. Figure 13 shows a drawing of the system setup. This section details the formulae used to calculate an optimal system setup, however the origins of each equation are not detailed because of resultant complexity.

Basic optical design of lens system. All values in this diagram can be calculated given certain known values and simple lens formulae.

4.3.1 Known Parameters

The first task was to determine all known parameters. Using these as a basis, the system can then be further characterised:

- f_l : Focal length of Lens 1 (mm).
- f_2 : Focal length of Lens 2 (mm).
- d_1 : Diameter of Lens 1 (mm).
- d_2 : Diameter of Lens 2 (mm).
- *L*: Working distance of DOE (mm).
- g: Separation of Lens 1 and Lens 2 (mm).
- *d*: Displacement between 1st and 2nd orders (mm).
- *M*: Magnification desired for entire system (usually negative).
- d_{doe} : Diameter of the DOE (mm).
- *v*_{size}: VCSEL size (square) (mm).
- v_{nx} : Number of VCSELs in array *x* direction.
- v_{ny} : Number of VCSELs in array *y* direction.
- θ . Divergence in radians.
- θ_{div} : Divergence in radians of beam between Lens 1 and Lens 2.
- T_{fl} : Lens tolerance of f_l against u_l (percent).

4.3.2 u₁: Distance between VCSEL array and LENS 1

 u_1 can be determined using the formula in equation 16. This value should essentially be around the same size as u_1 the focal length of Lens 1.

$$u_1 = \frac{\frac{f_2 \cdot f_1}{m} + f_1 \cdot (g - f_2)}{g - f_2 - f_1}$$
 Equation 16

4.3.3 v₂: Lens 2 to Image Plane

To find the distance between Lens 2 and the image plane, we first need to calculate a few other variables.

$$u_2 = g - \frac{f_1 \cdot u_1}{u_1 - f_1}$$
 Equation 17 $M_2 = \frac{f_2}{u_2 - f_2}$ Equation 18

Calculation of u_2 (equation 17) allows us to calculate M_2 (equation 18). Hence we can calculate the displacement between DOE and LENS 2, otherwise known as r (equation 19). Note that r cannot be greater than or equal to gsince this would invalidate the system.

$$r = u_2 - \frac{L}{M_2}$$
 Equation 19 $v_2 = \frac{1}{I - \frac{r}{u_2}}$

Equation 20

Finally we can calculate v_2 (equation 20).

4.3.4 w₁: Beam waist at Lens 1

The next task is to calculate the diameter of the beam at Lens 1: If it is larger than d_1 then the system will not work since the image is to large to fit through Lens 1. First we must calculate the furthest point from the axis to be imaged (equation 21).

$$h_1 = \frac{\sqrt{(v_{nx}.v_{size})^2 + (v_{ny}.v_{size})^2}}{2} \qquad \text{Equation 21} \qquad P_1 = 2u_1 \tan\left(\frac{\theta}{2}\right) \quad \text{Equation 22}$$

However, the beam from the furthest point still diverges and this additional distance is calculated as in equation 22.

Combining these calculations gives a beam $w_1 = 2\left(\frac{|P_1|}{2} + |h_1|\right)$ Equation 23 waist as shown in equation 23.

4.3.5 w₂: Beam waist at Lens 2

Analogous to w_1 above, we can calculate the beam waist at Lens 2.

$$h_{2} = h_{1} \left(\frac{g - f_{1}}{f_{1}} \right) \quad \text{Equation 24} \qquad v_{1} = \frac{1}{\left(\frac{1}{f_{1}} \right) - \left(\frac{1}{u_{1}} \right)} \quad \text{Equation 25}$$
First we must calculate h_{2} (equation 24)
followed by v_{1} (equation 25). This beam
waist also incurs additional size due to
divergence, as shown in h_{2} (equation 26).
$$P_{2} = \left| \left(\frac{u_{2}}{v_{1}} \right) \cdot P_{1} \right| \quad \text{Equation 26}$$

To complete the calculation all we need do is calculate equation 27. Once

again, if w_2 is greater than or equal to d_2 again, if w_2 is greater than or equal to u_2 the system will not be able to function $w_2 = 2\left(\frac{|P_2|}{2} + |h_2|\right)$ Equation 27

4.3.6 h_i: Image Size

To ensure that all calculations are correct, a To ensure that all calculations are context, the quick check can be made by calculating the $h_1 = \frac{h_2 M f_1}{(g - f_1)}$ Equation 28 be M times the magnitude of h_1 .

4.3.7 w_H: Beam Waist at DOE

One of the preconditions of this system is that there is not a focal point

between Lens 1 and Lens 2 i.e. $f_1 + f_2 > g$. This is advantageous in that $\theta_{div} = 2 \tan^{-1} \left(\frac{w_2 - w_1}{2g} \right)$ we can calculate the divergence of Equation 29

the beam θ_{div} (equation 29) between Lens 1 and Lens 2 using trigonometry. A diverging beam is represented by a positive value, a converging by a negative value.

This allows us to calculate the beam waist at the DOE w_H $w_H = w_1 + 2 \tan\left(\frac{\theta_{div}}{2}\right)(g-r)$ (equation 30). If this value is Equation 30

larger than the DOE's diameter then the system will again be invalid.

4.3.8 **A Distance Model**

The Matlab program produced hundreds of values on each test pass as g was gradually varied, so a method was needed to grade each result. It was decided that a value which represented the overall optical system size and also beam divergence between Lens 1 and Lens 2 should be used (Note that system size was considered to be twice as important as beam divergence). This allowed the quality of any valid system solution to be estimated while the program exhaustively tried different lens combinations and varied g.

Figure 14 System after re-alignment.

4.3.9 **Lens System Solution**

Given tolerances of a maximum system size of 1000 mm, 5 mm minimum distance between components and maximum deviation of VCSEL to LENS 1 distance u_1 against focal length f_1 of 50%, the program gave the test results shown in section 10.1. The best distance measure had a solution for g=15mm with f_1 =40 mm and f_2 =80 mm. This solution was implemented and after careful alignment proved to be a valid solution.

Figure 14 shows a photograph of four VCSELs being projected onto the detector array as before. Although the image quality is poor what is important here is that each of the projected orders from the VCSELs land exactly on a detector.

4.4 Detector Array

The detector array is a 10 by 10 matrix with a spacing of 1.5 mm between the centre of each detector. Obviously, not the entire matrix is needed and only the middle 6 rows and 8 columns are actually used.

This section tested the detector array by examining the sensitivity range of each element used. A diagram of the detector electrical circuit can be seen in figure 10 and is marked as 'Detector Board'. The problem associated here was that because the system was on a pre-fabricated board it was only possible to take measurements at specific points. The two values chosen were:

 I_{ccl} : The current sunk through the photodiode is directly proportional to the amount of light detected. If the efficiency of the photodiode array was known it would be possible to calculate the exact amount of light in watts, but unfortunately it was not.

 V_p : Voltage output from the detector board pre-amplifier.

The experimental setup simply consisted of a VCSEL's output being directed through an aperture onto a single detector. By

slowly increasing the power, it was possible to determine the minimum amount of current which needed to be sunk to start having an effect on the output voltage. The same method was also used to find the point at which the detector board saturated and any further difference in incident intensity would not be detected. This allowed determination of the working range. Figures 16 and 17 graph the results of minimum and maximum photo-currents with statistical analysis in figure 15. Detailed are results available in Appendix D.

It can be easily seen that, due to a complete lack of sensitivity, detectors 29 and 35 are not working correctly. This result proves significant in that if these detectors are avoided during testing it will prevent erroneous results. In addition, it was also detected that the detectors for channels 9 and 10 were wired round the wrong way.

Note that problems were encountered with the connectors between both detector board and amp-board. Fortunately, an easy method was found to

	V _p max (V)	V _p min (V)	l _{cc1} min (μA)	I _{cc1} min (μA)
Minimum	3.80	0.50	0.30	3.60
Average	4.10	0.83	0.46	3.98
Maximum	4.30	1.00	0.90	4.20
St. Dev.	0.12	0.10	0.14	0.14

	With Minim	um Error (-0.	1 from all value	s)						
Average	4.00	0.73	0.36	3.88						
With Maximum Error (+0.1 on all values)										
Average	4.20	0.93	0.56	4.08						

Figure 15

diagnose this problem: the detector's output, when measured at the ampboard, will be seen to float about 2-3V with no light rather than the normal of ~4V.

4.5 The Diffractive Optic Element (DOE)

This project also examined the efficiency of the DOE. Various VCSELs were chosen at random and a driven such that their output power did not saturate the detectors. The photo-current sunk by each detector was then measured thus allowing a comparison of the optical power in each order.

The problem with this examination is that there are many sources of error, ranging from imprecision in VCSEL and driver output to detector non-linearity. However, to help reduce channel specific values, the optical powers were normalised against the 0^{th} order thus making them more comparable to one another.

The x axis is the horizontal axis when viewed on the detector array. The 0^{th} order is x and is found at the centre of the cross.

The *x* axis is the horizontal axis when viewed on the detector array. The 0^{th} order is *x* and is found at the centre of the cross.

Figures 18 and 19 show the results taken for a random set of channels (Appendix E shows more detailed results). These graphs consider the x orders to be the horizontal line of the DOE output when looking onto the detector array and y orders the vertical.

The most important line here is the 'average value'. This is the best indication of the response of the DOE. It clearly shows that most of the orders seem fairly stable at 20 times the magnitude of the zero order: except for in the positive x direction where x+5 and x+6 prove to be consistently low.

4.6 Electronic Modules

4.6.1 Amp-Board

This module is designed to amplify the output from the detector board and also includes a high pass filter to remove any DC component from the input signal. Figure 10 shows the layout of the amp-board and figure 20 a picture.

This module was tested by inputting a signal which swept the entire voltage range output by the stage before it. With

Figure 20

amplification set at -1, the expected inverted output was received. This test was repeated for each and every channel and the output monitored.

Testing found a damaged amplifier chip where one of the four operational amplifiers was not working as expected. The damaged chip was promptly replaced. This implementation uses the Texas Instruments operational amplifier LM324N as detailed in Appendix F.

4.6.2 Neural Switch Card

Before testing could commence, it was also necessary to test and calibrate the neural switch card. Figure 10 shows the neural switch card's layout and figure 21 a photograph of the implemented system.

The first task was to set up correct reference voltages, as defined previously by calculation [3]:

 $V_{\text{start}} = \text{VR9} = 5.01\text{V} \pm 0.001\text{V}$ $V_{\text{rio/ref}} = \text{VR10} = 2.81\text{V} \pm 0.001\text{V}$ $V_{\text{off}} = \text{VR11} = 3.92\text{V} \pm 0.001\text{V}$ Analog 7V = VR12 = 7.000V $\pm 0.5\text{V}$ Analog 6V = VR13 = 6.000V $\pm 0.001\text{V}$

Figure 21

Significant instability was noticed on the analog 7V channel and a dry joint was suspected. Careful soldering in the suspected area lead to its discovery and after re-soldering the reference voltage became stable:

Analog 7V = VR12 = 7.000V ±0.001V

The next step was to calibrate the VCSELs using available optical output power versus drive current data. A solution was devised where an ammeter was inserted into the circuit just before the VCSEL to measure drive current. A square wave was then applied to the channel being measured with a frequency of 0.5Hz so that the full range of neuron input voltages were swept (i.e. input voltage between the amp-board's output limits). By observing the drive current carefully, minimum and maximum values could be determined,

allowing variable resistors R_{10} and R_{11} (figure 10) to be adjusted to give the appropriate optical power output. The optical output powers chosen were 0.05mW representing an 'off' state and 0.8mW for 'on'. Previous data is available on the HP Workstation under 'VSL1:DATA6'. This method of testing also had the advantage that the electrical circuit for each neuron would be tested simultaneously.

Before adjustment of the system could begin it was necessary to verify the validity of the previous data. The reason for this was that

the VCSELs were originally profiled in a colder environment than that during the experiment. Any large variance in threshold would indicate a temperature dependent change in characteristics. One VCSEL was chosen at random and its optical output power versus drive current curve plotted to find its threshold (see figure 22). The data on the graph allowed determination of a change in threshold: all new thresholds are now 94% of the original.

A foreseeable problem was that the resistance of the ammeter would be high in comparison to that of the VCSEL. The manufacturer's data and application of Ohm's law allowed calculation of minimum (235 Ω) and maximum (500 Ω) VCSEL resistances, dependent on drive current. Measurement of the ammeter's resistance showed that it was 7.6 Ω . This is a worst case difference in resistance of 3.2% which was considered unacceptable. The range on the ammeter was then changed and one selected which had a resistance of 1.1 Ω (0-200mA). This gave an influence of 0.47% worst case and is well within tolerable limits.

Conversion of all values extracted from the HP workstation was also required since it only displays the optical power for a given current in 0.2mA steps. Presuming that the increase between two points is relatively linear, we can create a formula to calculate the desired optical power output given current and optical powers of the two points next to it. Note that equation 31 also takes into account the temperature change, where:

 P_{req} = Power output desired.

 P_U = Power output from VCSEL with a drive current of I_U . These are the upper (or higher) values.

 P_L = Power output from VCSEL with a drive current of I_L . (not used in this equation). These are the lower values.

 I_{req} = Current to be used to drive VCSEL.

Calculation of each value can be found in Appendix G.

This data now allows calibration of the Neural switch card. Systematic adjustment of R_{10} and R_{11} should swing the VCSEL current between the two desired values for the appropriate channel. Before calibrating any VCSEL, it was ensured that both variable resistors were at absolute minimum power out. Even so, VCSELs began to fail during calibration. Careful examination revealed that when negative was not connected on the ammeter there was an AC coupling of ~±1.1V present. Any negative bias is capable of damaging a VCSEL if it exceeds ~-2V (the tolerance of which is not known): but this should not be enough to cause considerable damage. A very serious problem was noticed later: the outputs from the neural switch card take on a -5V potential when the negative terminal is not connected. Avoidance of this situation was made to prevent possible damage to any more VCSELs.

Once calibration was completed, the following points were noted:

 $I_{req} = \left(\frac{3.91}{4.14}\right) \cdot \left(\frac{P_{req} - \left(P_U - \left(\frac{P_U - P_L}{0.2}\right)I_U\right)}{\left(\frac{P_U - P_L}{0.2}\right)}\right)$

Equation 31

Ch. Notes

- 0 VCSEL fail. Power outputs calibrated.
- 3 VCSEL fail. Cannot calibrate: biases set to minimum.
- 10 Drive current low. 750Ω connected in parallel with 470Ω bias.
- 16 Detector and VCSEL fail. Cannot calibrate so current set to minimum.
- 17 VCSEL fail. Calibrated.
- 18 Drive current low: parallel $1k\Omega$ resistor connected.
- 19 VCSEL fail. Calibrated.
- 22 VCSEL fail. Cannot calibrate so current set to minimum.
- 24 VCSEL works but optical power output low. Current calibrated.
- 34 VCSEL fail. Calibrated.
- 35 Detector fail.
- 36 Drive current low: parallel 750k Ω resistor connected.
- 37 VCSEL fail. Calibrated.
- 38 Drive current low: parallel 750k Ω resistor connected. VCSEL fail.
- 39 VCSEL fail. Cannot calibrate so current set to minimum.

Some channels are marked as 'cannot calibrate'. This is not actually the case as all channels could be calibrated if components were replaced. However, there is little point in doing this as the VCSELs do not work in the first place so the currents were set to a minimum so that as little power as necessary was drawn.

The only task left was to test the system.

4.7 Investigation of System Response

This section examines the complete system where all components and modules were assembled and tested. Figure 23 lists all component values with reference to figure 10 for component integration.

During testing, all channels with failed VCSELs, low power VCSELs and failed detectors were not used – these channels are listed in section 4.6.2. Optical alignment was again re-checked to ensure accuracy. Three important points were carefully re-checked:

- Total VCSEL power output did not saturate detectors in off state.
- V_{ref} produced a correct response.
- Amplification on amp-board was set correctly.

It was found that the total power output was too high, so instead of laboriously re-calibrating every part of the system a beam splitter was simply inserted.

Three channels were chosen at random from the usable selection and their output examined. It became clear that certain neurons seemed to have priority over others. Examination of the system showed that the VCSELs did not seem to be correctly calibrated and switching on some VCSELs induced a photo-current twice the size of others. The induced photo-currents were

Compone	ent Values
R ₁ =100Ω	R_2 =100k Ω
R ₃ =470Ω	R ₄ =1kΩ
R_5 =3.3k Ω	R_6 =100k Ω
R_7 =100k Ω	R ₈ =100kΩ
R ₉ =470Ω	R ₁₀ =500Ω
$R_{11}=1k\Omega$	$R_{12}=1k\Omega$
C ₁ =47pF	C ₂ =10nF

Figure 23

Time constraints at this point in the project prevented re-calibration of the VCSEL array, so a set of channels were selected that had a similar induced photo-current level of 1.6μ A per detector (±0.1µA), as shown in equation 32.

	0	0	0	0	1	0	0	1	0
	8	0	0	0 0 1 0 0 1					
alaatad -	16	0	0	1	0	0	0	1	0
elected –	24	0	0	0	0	0	0	0	0
	32	0	0	1	0	0	0	1	1
	40	0	0	0	0	0	1	0	1

Equation 32

All channels which contain a 1 were selected for testing due to similar VCSEL characteristics.

Testing was performed by requesting a set of

neurons and examining which turned on using the program 'NETRUN' on the HP workstation. If the neurons which turned on indicated a valid and optimal solution then the test was considered successful. The test data is saved in a file on the HP workstation under HOP:TSEQ.

Figures 33 and 34 show some sample results and outputs with more detailed results in Appendix I.

safe operating limits.

During testing it became obvious that V_{ref} played an important role in as far as finding a valid solution is concerned, sometimes requiring extremely fine adjustment.

Examination of the system indicated that detector saturation could be causing a problem, thus photographic film was inserted into the system which absorbed ~33% of throughput power. This did

Request										Res	spor	ise					
0	0	0	0	1	0	0	1	0	0 [0	0	0	0	0	0	1	0	
8	0	0	0	0	1	0	0	1	8 0	0	0	0	1	0	0	0	
16	0	0	0	0	0	0	0	0	16 0	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	0	\Rightarrow 24 0	0	0	0	0	0	0	0	
32	0	0	0	0	0	0	0	0	32 0	0	0	0	0	0	0	0	
40	0	0	0	0	0	0	0	0	40_0	0	0	0	0	0	0	0	
$V_{ref} = 0.78V$									Ε	qı	ıat	ioi	n 3	3			
			R	lequ	iest						Res	spor	nse				
0	0	0	R 0	lequ 1	iest 0	0	1	0	0 [0	0	Res 0	spor 0	nse 0	0	1	0]	
0 8	0	0 0	R 0 0	lequ 1 0	iest 0 1	0 0	1 0	0 1	$\begin{array}{c} 0 & 0 \\ 8 & 0 \end{array}$	0 0	Res 0 0	spor 0 0	nse 0 1	0 0	1 0	$\begin{bmatrix} 0\\0 \end{bmatrix}$	
0 8 16	0 0 0	0 0 0	R 0 0 1	tequ 1 0 0	iest 0 1 0	0 0 0	1 0 1	0 1 0	$ \begin{array}{c c} 0 & 0\\ 8 & 0\\ 16 & 0 \end{array} $	0 0 0	Res 0 0 0	spor 0 0 0	nse 0 1 0	0 0 0	1 0 1	0 0 0	
0 8 16 24	「0 0 0	0 0 0 0	R 0 0 1 0	1 0 0 0	0 1 0 0	0 0 0	1 0 1 0	0 1 0 0	$\Rightarrow \begin{array}{c} 0 & 0 \\ 8 & 0 \\ 16 & 0 \\ 24 & 0 \end{array}$	0 0 0 0	Res 0 0 0 0	spor 0 0 0 0	nse 0 1 0 0	0 0 0 0	1 0 1 0	0 0 0 0	
0 8 16 24 32	0 0 0 0	0 0 0 0 0	R 0 1 0 1	tequ 1 0 0 0 0	1 0 0 0 0	0 0 0 0	1 0 1 0 1	0 1 0 0 1	$ \begin{array}{c} 0 & 0 \\ 8 & 0 \\ \Rightarrow \begin{array}{c} 16 & 0 \\ 24 & 0 \\ 32 & 0 \end{array} $	0 0 0 0 0	Res 0 0 0 0 1	spor 0 0 0 0 0	nse 0 1 0 0 0	0 0 0 0 0	1 0 1 0 1	0 0 0 0 1	
0 8 16 24 32 40	0 0 0 0 0	0 0 0 0 0	R 0 1 0 1 0	1 0 0 0 0 0	1 0 0 0 0 0	0 0 0 0 1	1 0 1 0 1 0	0 1 0 0 1 1	$\Rightarrow \begin{array}{c} 0 & 0 \\ 8 & 0 \\ 0 \\ 16 & 0 \\ 24 & 0 \\ 32 & 0 \\ 40 & 0 \end{array}$	0 0 0 0 0	Res 0 0 0 0 1 0	spor 0 0 0 0 0 0	nse 0 1 0 0 0 0	0 0 0 0 0	1 0 1 0 1 0	0 0 0 0 1 0	

Invalid solution to request.

result in valid solutions for higher power levels, but not for lower ones: V_{ref} had to be adjusted to a specific level before the system would find a solution for request matrices.

There was obviously something more fundamentally wrong with the system than simply a power problem. The next stage was to check the amplifier outputs (V_{inv} , figure 9) and ensure they were as expected. It was decided to

monitor two neuron outputs: that of a neuron which was requested but turned off and that of a neuron which was not requested, nor did it turn on.

A major problem immediately became apparent: when a neuron turns off, it should fall from ~4V to the same value as the switched off neuron (V_{off} , ~2V) before switch off time. Unfortunately it does not and will go no lower than ~3V. The first solution was to increase amplification on the amp-board but this only resulted in the neuron choosing quicker and still going no lower than ~3V.

Various attempts were made to bring the minimum value down from \sim 3V to \sim 2V including increasing the amp-board drive voltage from 5V to 10V. This solution, although helpful, still did not solve the problem.

Next, an attempt was made to adjust the voltage levels of $V_{rio/ref}$, V_{off} and V_{start} . This started to alter the voltage levels, but because of the circuit design it was not possible to adjust them to a great enough degree. After trying various methods it was concluded that without changing component values or perhaps even re-designing the reference voltage system on the neural switch card it would not be possible to create a fully working system.

There is also one final point that any further work should consider: the system seemed very sensitive to any movement of the inserted beamsplitter, suggesting that the filter is setting up a resonance cavity. Either this possibility should be investigated or the filter replaced by some other method of reducing optical throughput.

5 **Conclusion**

This report has carefully looked at the theory and implementation of an optoelectronic neural network for switching and provided some promising results. It has been shown that, with further work, the optical neural network can be implemented as proposed. Nevertheless, various problems still need to be eradicated in the hardware system, one of which being size. Even though the system is exceedingly efficient at routing, it still faces the problem of hardware complexity when embedded in large switches.

What makes this system so interesting is its diversity: switching is only one of its many applications. Essentially, this system could be used to solve any quadratic assignment problem where time is of the essence. Its ability to handle larger order problems without serious performance degradation emphasises the contribution such systems could make to the field of computing.

5.1 Future Work

There are a few areas which need refinement in this system, but to bring it into working order the following two recommendations should be carried out:

- Each VCSEL needs to be re-profiled so that the system can be calibrated correctly.
- The neural switch card needs to be modified so that the reference voltages can be varied over a larger range.

A further interesting point is temperature sensitivity: in particular that of the VCSELs. The current VCSEL characteristics differ dramatically from those measured beforehand – the only change being a temperature difference. Although it is unlikely that such a large difference was caused by air temperatures in hot and cold rooms, it is worth eliminating as a possible cause.

5.2 Acknowledgements

I wish to acknowledge and thank both Rod Webb and Mohammed Taghizadeh for their help and advice during my industrial project.

6 Glossary

U

AC	Alternating Current
ATM	Asynchronous Transfer Mode
DC	Direct Current
DOE	Diffractive Optic Element
TSP	Travelling Salesman Problem
VCSEL	Vertical Cavity Surface Emitting Laser

7 Bibliography

This Bibliography includes some comments on certain references. The idea is to help assess the relevance of any source before it is looked up. Some comments require an understanding of the system described in this report.

[1] Peter W. Protzel, Daniel L. Palumbo and Michael K. Arras, "Performance and Fault-Tolerance of Neural Networks for Optimisation", IEEE Transactions on Neural Networks, volume 4, number 4, July 1993.

This paper discusses neural network applications for solution of both the assignment problem and travelling salesman problem and the inherent advantages/disadvantages of such a solution in any situation.

- [2] M. Gell, "Constrained Optimisation of Neural Networks for Switching: Hopfield Neural Networks", Patent Application (draft) to Kilburn and Strode, MNM/BH/P16935GB, IPD Case A24518, 13th January 1993. Patent application by BT to Kilburn and Strode. Does a nice job of explaining the theoretical system and current application.
- [3] Andreas Ludolph, *"Examinations on a Neural Switch Controller"*, Master of Science Dissertation Project in Applied and Modern Optics at University of Reading, September 1998.

Explains the current system in detail. More examination of the electronic side of things. Also includes an examination of a terabit backplane.

[4] C. Bousoño-Calzón and M. R. W. Manning, "The Hopfield Neural Network Applied to the Quadratic Assignment Problem", BT Labs paper, Martlesham Heath, Ipswich, IP5 7RE, publication date unknown.

Examines the Quadratic Assignment Problem and current solutions from a problem complexity point of view. It proposes using a neural algorithm to solve the QAP and compares it to these current solutions concluding that the neural approach has performance and scalability benefits.

[5] Joydeep Ghosh, Ajat Hukkoo and Anjun Varma, "Neural Networks for Fast Arbitration and Switching Noise Reduction in Large Crossbars", IEEE Transactions on Circuits and Systems, volume 38, number 8, August 1991.

Presents two VLSI solutions for large crossbar switching systems controlled by neural networks. It examines their performance and draw the conclusion that hierarchical control is superior to batch control.

[6] M. R. W. Manning and M. Gell, *"Evaluation of the Hopfield Neural Network for Service Assignment"*, BT Labs paper, Martlesham Heath, Ipswich, IP5 7RE, publication date unknown.

Discusses the parameters A, B, C and D and their effect on a Hopfield neural network when configured for switching.

[7] W. J. Wolfe, J. M. MacMillan, G. Brady, R. Mathews, J. A. Rothman, D. Mathis, M. D. Orosz, C. Anderson and G. Alaghband, *"Inhibitory Grids and the Assignment Problem"*, IEEE Transactions on Neural Networks, volume 4, number 2, March 1993.

This paper examines a series of networks that are closely related to the Hopfield-Tank model. It concludes that, although these models do not achieve optimal performance, their performance (measured by simulation) is very similar to the HT model.

[8] J. J. Hopfield and D. W. Tank, *"Neural' Computation of Decisions in Optimisation Problems"*, Biological Cybernetics, volume 52, pages 141-152, 1985.

This is the defining paper for the Hopfield-Tank (HT) model. The results of computer simulations are presented here to illustrate the problem solving power of neural networks.

[9] R. D. Brandt, Y. Wang, A. J. Laub and S. K. Mitra, "Alternative Networks for Solving the Travelling Salesman Problem", IEEE International Conference on Neural Networks, 24th to 28th Feb. 1998, San-Diego. Examines a HT neural network model with a modified energy function and concludes that it has better performance than their model of the HT network. The paper then proceeds to examine fixed parameter networks which have superior fabrication ease. [10] T. X. Brown, "Neural Networks for Switching", IEEE Communications Magazine, November 1989. Examines two possible configurations of Neural Nets for crossbar switch control. Consideration is also given to parallel machines. [11] T. X. Brown, "Chapter3: Controlling Circuit Switching Networks", Extract from T. X. Brown's Thesis from CalTech. A good introduction to the switch and how a neural network will be mapped onto it. Reference [10] is a more comprehensive but less detailed version [12] J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective Computational Abilities", Proc. Natl. Acad. Sci. USA,

Volume 79, pages 2554-2558, April 1982. Initial paper examining and defining the neural network and the role of the neuron. It combines these neurons and examines the emergent collective properties exhibited.

- [13] J. J. Hopfield, "Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons", Proc. Natl. Acad. Sci. USA, volume 81, pages 3088-3092, May 1984. Builds upon the original model in [12] to create a large network of neurons with graded response. Proposes an electrical model of the system.
- [14] A. Marrakchi and T. Troudet, "A Neural Net Arbitrator for Large Crossbar Packet Switches", Circuits and Systems Letters, IEEE Transactions on Circuits and Systems, volume 36, number 7, July 1989.

Proposes a Hopfield Neural Network architecture for controlling a crossbar switch and backs up proposition with simulation results and a VLSI system.

[15] S. U. Hegde, J. L. Sweet and W. B. Levy, "Determination of Parameters in a Hopfield Tank Computational Network", Depts. of Computer Science and Neurosurgery, University of Virginia, Charlottesville, Virginia 22903, publication date unknown.
Higher level examination of network size in relation to the parameters in a Hopfield neural network leads to the conclusion that it does not

Higher level examination of network size in relation to the parameters in a Hopfield neural network leads to the conclusion that it does not scale well when applied to the TSP or any related problem.

- [16] S. B. Aiyer, M. Niranjan and F. Fallside, "A Theoretical Investigation into the Performance of the Hopfield Model", IEEE Transactions on Neural Networks, volume 1, number 2, June 1990.
 An in depth theoretical mathematical analysis and proof of the Hopfield Neural Network. Proposes a solution to make the network robust and allow higher order (up to 50) TSP problems to be reliably solved.
- [17] R. P. Webb, "Optoelectronic Implementation of Neural Networks", International Journal of Neural Systems, volume 4, number 4, pages 435-444, December 1993.

Proposes three solutions for implementing Optoelectronic Neural Networks all of which have been demonstrated operational up to 50Mhz.

- [18] P. S. Guilfoyle and F. F. Zeise, *"Global Optical Free Space 'Smart' Interconnects"*, Proceedings of the SPIE, code 1849-20. Proposes a new architecture for implementing an N bit Boolean multiplier which uses N4 optical interconnects.
- [19] P. S. Guilfoyle, F. F. Zeise and R. V. Stone, "Diffractive Optical Interconnect Element Design for Digital Switching", OptiComp Corporation, Zephyr Cove, NV 89448-2889, 1994.

Examines the advantages of using a diffractive optical interconnect element over conventional bulk elements for digital switching.

U

[20]	R. P. Webb, Internal documentation, BT Labs, Martlesham Heath, Ipswich, IP5 7RE, Various dates.
[21]	R. P. Webb and A. W. O'Neill, <i>"Optoelectronic Neural Networks"</i> , BT Technology Journal, Volume 10, No. 3, pages 144-154, July 1992.
[22]	M. R. Garey and D. S. Johnson, <i>"Computers and Intractability"</i> , New York, W. H. Freeman, 1979.
[23]	J. Munkres, <i>"Algorithms for Assignment and Transportation Problems"</i> , J. Soc. Ind. Appl. Math., 5, 32-8, 1957.
[24]	M. M. Ali and H. T. Nguyen, <i>"A Neural Network Controller for a High Speed Packet Switch"</i> , 1990.
[25]	B. S. Wherret, <i>"Optics in Computing"</i> , Lecture Notes from Heriot-Watt University, 1998.
[26]	M. Taghizadeh and J. Turunen, "Synthetic Diffractive Elements for Optical Interconnection", Optical Computing and Processing, 2 (4), pages 221-242, (1992).
[27]	F. A. P. Tooley, <i>"Optoelectronic Devices"</i> , Lecture Notes from Heriot-Watt University, 1998.
[28]	A. J. Waddie, "Optoelectronic Neural Networks: The Design and Analysis of a Network Based Around Optoelectronic Smart Pixels", PhD Thesis, Heriot-Watt University, September 1995.
[29]	Robert L. Harvey, <i>"Neural Network Principles"</i> , Prentice Hall International Editions, 1994.
[30]	James A. Anderson, "An Introduction to Neural Nets", IT Press, 1995.
[31]	Simon Haykin, "Neural Networks", Macmillan Publishing Company, 1994.
[32]	Clifford Lau, "Neural Networks: Theoretical Foundations and Analysis", IEEE Press, 1991.
[33]	A. J. Waddie and J. F. Snowdon, <i>"A Smart Pixel Optical Neural Network Design Using Customised Error Propagation"</i> , Department of Physics, Heriot-Watt University.
[34]	D. Huang, J. F. Snowdon and A. J. Waddie, <i>"Free Space Optical Technology and Neural Network Applications"</i> , Paper presented at Appl. Opt. Div. Conf. Reading, 16-19 September 1996.
[35]	J. Hertz, A. Krough and R. G. Palmer, <i>"Introduction to the Theory of Neural Computation"</i> , Addison-Wesley, 1991.

8 Appendix A

This section contains Matlab V4.2.1c for Mac code for theoretical simulation of the neural network used in this project.

8.1 Theory_model.m

```
% Theoretical Switch Controller
% Step by step
function Theory model()
% Clear all variables, functions and MEX links.
clear all
% Set up neuron type.
program = 'Theory';
% Indicate startup and tell user neuron type.
fprintf('
                                                               \n')
fprintf(['Running network with ', program, '\n'])
% Set up local variables.
order=10;
                                    % Order x order crosspoints.
A0=1250;
                                    % A=B. Weights to elements in same row or column.
A=A0*ones(order);
                                    % Create a matrix of size 'order' where all values are A0.
C=100;
                                    \% Set optimisation value.
dt=0.1;
                                    % Time increment.
Tlpf=3;
                                    % LPF time constant.
Tph=10*Tlpf;
                                    % Length of run: 10 times Tlpf.
noise=1e-3;
                                    % rms noise amplitude.
slope=0.02;
                                     % For linear neuron (max sigmoid slope for beta = 0.08)
randn('seed', cputime);
                                    % Choose new seed for gaussian noise based on CPU time.
                                    % Intial requested crosspoints.
request=ones(order);
% request=tril(ones(order));
                                    % Intial requested crosspoints.
trecord=[0: dt: Tph];
X=zeros(order);
                                     % Initial states.
Y=zeros(order);
% Initialise memory for record of successive states
Xrecord=zeros(length(trecord), order^2);
Yrecord=zeros(length(trecord), order^2);
\% Start with initial states: Fill row 1 of Xrecord with contents of X (same for Y).
Xrecord(1,:) = X(:)';
Yrecord(1,:) = Y(:)';
% Start timing.
tic
% Repeat for every element in trecord.
for i=2: length(trecord)
         % Amplify and truncate each neuron output, then multiply by request.
         Y=lin_neuron(X, slope).*request;
         % Update input voltage to each neuron
X=X+dt/Tlpf.*(-X-A.*Xbar_wts(Y)+C/2)+noise.*randn(order);
         % Let the user know it's alive.
         if (rem((i-1), 50)==0)
                  fprintf('.\n');
         else
                  fprintf('.');
         end;
         % Record successive states.
         Xrecord(i,:)=X(:)';
         Yrecord(i,:)=Y(:)';
end
% Tell the user that your finished.
fprintf(['Finished. Time taken = %5.1f sec.\n'], toc)
fprintf('
                                                               \n')
figure ('Name', 'Final output')
Start_end_image(trecord, Yrecord, request)
plot x
Xmax=max(max(Xrecord));
```

1

```
% Axis([trecord(1), trecord(length(trecord)), -Xmax, Xmax])
plot_y
```

8.2 Lin_neuron.m

```
% Y=lin_neuron(X, slope)
%
% Each element in X is multiplied by slope and has 0.5 added.
% Values then truncated to within [0, 1].
%
% Amplifier with gain = slope acting on elements of X.
% Output limits at 0, 1.
% lin_neuron(0)=0.5.
function Y=lin_neuron(X, slope)
```

Y=max(0, min(1, 0.5+slope.*X));

8.3 Xbar_wts.m

 $\$ Ysum(i,j) is the sum of row i + the sum of column j in Y excluding element Y(i,j). function Ysum=Xbar_wts(Y)

Ysum=sum(Y')'*ones(1, size(Y, 2))+ones(size(Y, 1), 1)*sum(Y)-2*Y;

8.4 Plot_y.m

```
% Plot evolution of outputs
figure ('Name', ': outputs')
plot(trecord, Yrecord); % plot Y/time for each neuron
grid
xlabel ('time');
ylabel ('Y');
```

8.5 Plot_x.m

```
% Plot evolution of inputs
figure ('Name', [program, ': inputs'])
plot(trecord, Xrecord); % plot X/time for each neuron
grid
xlabel ('time');
ylabel ('X');
```

8.6 Start_end_image.m

```
image(max(Y, request/2)*maplength)
axis square
title(['Request & final state. t = ', num2str(t)]);
drawnow
```

9 Appendix B

This section contains Matlab V4.2.1c for Mac code for theoretical simulation of the electronic and optical system used to implement a neural network.

9.1 Run_Circuit.m

```
Run circuit runs the Optical Network simulation
 Code cleaned up by Keith Symington
% Author unknown
% Clear all variables and pack memory.
fprintf('Initialisation: Memory cleanup...');
clear all;
pack;
fprintf('done.\n');
% Count flops.
tic
% Define the neuron being used.
program='Neuron8 (linear comparator)';
fprintf('
                                                               \n');
fprintf(['Running circuit with ', program, '\n']);
% Set up all global variables.
global Kd Vpb Vpmin Rf Thpf Vcb Gc Vcmax Vcmin Vinrange Tlpf Voff Vstart Vref Rl Kl comp_noise
% Initialise parameter settings.
Init circuit;
% Set up initial states.
Y=Ninverter(0,Vstart,Vref,0).*ones(order).*Kl./Rl;
% Initialise memory for record of successive states.
fprintf('Initialisation: Memory allocation for recording progress...');
Xrecord=zeros(length(trange), order^2);
Yrecord=zeros(length(trange), order^2);
Vprecord=zeros(length(trange), order^2);
Vhpfrecord=zeros(length(trange), order^2);
Vcoutrecord=zeros(length(trange), order^2);
Vlpfrecord=zeros(length(trange), order^2);
Vinvrecord=zeros(length(trange), order^2);
fprintf('done.\n');
% Calculate for every value in the time sequence.
for i=1:length(trange)
        % Select time value for appropriate iteration.
        t=trange(i);
         % Is this the first cycle?
        if i>1 dt=t-trange(i-1);
        else dt=trange(2)-t;
        end
        % Set enable dependent on iteration number.
        enable=enablerange(i);
        % Optical Input.
        X=H.*Xbar_wts(Y)+noise.*randn(order);
% Optical Output.
         [Vp, Vhpf, Vcout, Vlpf, Vinv, Y] = neuron8 (X, enable, request, dt);
        % Record successive states.
        Xrecord(i,:)=X(:)';
        Yrecord(i,:)=Y(:)';
         Vprecord(i,:)=Vp(:)';
        Vhpfrecord(i,:)=Vhpf(:)';
        Vcoutrecord(i,:)=Vcout(:)';
        Vlpfrecord(i,:)=Vlpf(:)';
        Vinvrecord(i,:)=Vinv(:)';
end
% Tell the user that the system is finished.
fprintf(['Finished. Time taken = %5.1f sec.\n'], toc)
% Reset tic.
tic;
```



```
% Draw the solution that the system proposed.
figure ('Name', 'Final output')
Out_image
% Plot the voltage characteristics at various stages.
plot_volts
fprintf(['Time taken for plotting = %5.1f sec.\n'], toc)
fprintf('_______\n')
```

9.2 Init_circuit.m

```
% Intialise circuit
% Random seeds.
randn('seed', cputime);
                                            % Choose new seed for gaussian noise.
rand('seed', cputime);
                                            % Choose new seed for uniform noise.
order=6;
dt1=0.02e-6;
                                            % Time increment 1.
dt2=1e-6;
                                            % Time increment 2.
Thpf=2.2e-3;
                                            % HPF time constant.
Ctol=0;
                                            % capacitor tolerance
Tlpfmean=33e-6;
                                            % mean value of LPF time constant.
Tlpf=Tlpfmean*(1+Ctol*rands(order));
                                            % LPF time constant:
                                             % (Varies because of capacitor tolerance.)
Tph1=10e-6;
                                            % Length of settling period.
Tph2=0.3e-3;
                                              Length of run.
Tph3=0;
                                            % Length of run.
                                            % Noise equivalent power (rms).
noise=1e-9;
comp_noise=0.002;
                                            % Comparator noise.
Kd=0.5;
                                            % Detector sensitivity.
Vpb=2.1;
                                            % Preamp quiescent.
Vpmin=0.1;
                                            % Preamp lower limit.
Rf=1e6;
                                            % Transimpedance.
Vcb=2.11;
                                            % Comparator guiescent.
Gctol=0;
                                            % Comparator gain tolerance.
Gcmean=213;
                                            % Mean comparator gain.
Gc=Gcmean*(1+Gctol*rands(order));
                                            % Comparator gain.
Vcmax=3.92;
                                            % Comparator max.
Vcmin=0.31:
                                            % Comparator min.
Voff=Vcmax;
                                             6 Off voltage.
Vstart=Voff-((Vcmax-Vcmin)/50)/(order-1);
                                            % Start voltage.
Vref=Vcb;
                                            % Inverter reference voltage.
Vthresh=Ninverter(Vcb, Vstart, Vref, 1);
                                            % Threshold for classifying output.
Rl=1.2e3;
                                            % Laser drive resistor.
                                            % Laser A/W tolerance.
Kltol=0;
Klmean=0.24;
                                            % Mean Laser A/W.
Kl=Klmean*(1+Kltol*rands(order));
                                            % Laser A/W.
Htol=0;
                                            % Optical loss tolerance.
Hmean=2 Oe-3:
                                            % Mean optical loss.
H=Hmean*(1+Htol*rands(order));
                                            % Optical loss
% Requested crosspoints.
request=ones (order);
% Alternative requested crosspoints.
% request=tril(ones(order));
% Set up trange: Minimum time, step size and maximum time.
% Creates an array with an element for each step.
trange=[-Tph1: dt2: Tph2+Tph3];
% Alternative trange.
% trange=[-Tph1: dt2: 0, dt1: dt1: Tph2, Tph2+dt2: dt2: Tph2+Tph3];
% enablerange is derived from trange: element contains a 1 when time
% has gone past zero.
enablerange=trange>0;
```

9.3 Ninverter.m

```
% Inverter with gated input.
% Used by neuron7 & neuron8.
function Vinv=Ninverter(Vin, Vstart, Vref, enable)
% Inverter output
Vinv=(2*Vref-Vin).*enable+(2*Vref-Vstart).*(~enable);
% Alternative inverter output
```

```
% Vinv=(2*Vref-Vin).*enable+(1.5*Vref-0.5*Vstart).*(~enable);
```


9.4 Rands.m

9.5 Xbar_wts.m

 $\$ Ysum(i,j) is the sum of row i + the sum of column j in Y excluding element Y(i,j). function Ysum=Xbar_wts(Y)

Ysum=sum(Y')'*ones(1, size(Y, 2))+ones(size(Y, 1), 1)*sum(Y)-2*Y;

9.6 Out_image.m

```
% Output image
% Show outputs as image
% Create colormap
maplength = 16;
shade1 = [0, 0, 0.5];
                                           % 'bottom' shade for colourmap (R, G, B).
shade2 = [1, 0, 0];
                                                    % 'top' shade for colourmap.
map = [linspace(shade1(1), shade2(1), maplength)', linspace(shade1(2), shade2(2), maplength)',
linspace(shade1(3), shade2(3), maplength)'];
colormap(map)
Ymin = min(min(Y));
Yrange = max(max(Y)) - Ymin;
image((Y-Ymin)*maplength/Yrange)
axis square
if exist('t')
        title(['Neuron ouputs. t = ', num2str(t)]);
else
        title('Neuron ouputs');
end
drawnow
```

9.7 Neuron8.m

```
% neuron8 approximates to real circuit.
% The comparator output is gated by the enable matrix.
% Q is the optical input.
% Y is the optical output.
function [Vp,Vhpf,Vcout,Vlpf,Vinv,Y]=neuron8(Q,enable,request,dt)
global Kd Vpb Vpmin Rf Thpf Tlpf Voff Vstart Vref Rl Kl comp_noise
Vp=max(Vpb-Q.*Kd.*Rf, Vpmin); % Preamp voltage.
```

```
Vhpf=HPF(Vp, dt./Thpf); % High-pass filter output.
Vcout=lin_comparator(Vhpf); % Comparator output.
Vlpf=LPF(Vcout, dt./Tlpf)+comp_noise.*rands(size(Vcout)); % Low-pass filter output.
Vsel=Vlpf.*request + Voff.*(~request); % Select outputs.
Vinv=Ninverter(Vsel,Vstart,Vref,enable); % Inverter output.
Y=Vinv.*Kl./Rl; % Light output.
```

9.8 HPF.m

```
% High-pass CR filter response.
% Vin = input voltage
% dt = time increment normalised to filter time constant (ie. dt/tau),
% Vinit = previous steady-state input voltage (optional). Defaults to Vin.
% If Vin and Vinit are vectors or arrays, they are treated as voltages on
% parallel filters, not as time series.
% Warning: must initialise Vinit or "clear all" if dimensions of Vin change!
function Vout = HPF(Vin, dt, Vinit)
```


% Perform filtering. Vcap_hpf=Vin.*dt+Vcap_hpf.*(1-dt); Vout=Vin-Vcap_hpf; % dt is assumed to be small

9.9 LPF.m

```
% Low-pass RC filter.
% Vin = input voltage,
\ensuremath{\$}\xspace dt = time increment normalised to filter time constant (ie. dt/tau),
% Vinit = previous output voltage (optional).
% If Vin and Vinit are vectors or arrays, they are treated as voltages on
% parallel filters, not as time series.
  Warning: must initialise Vinit or clear all if dimensions of Vin change!
function Vout=LPF(Vin, dt, Vinit)
\ensuremath{\$} ...so that it can be remembered.
global Vlast_lpf
if nargin == 3
          % Set previous output voltage if given.
         Vlast
                 lpf = Vinit;
elseif ~exist('Vlast_lpf')
         % Initialise Vlast_lpf if it doesn't exist already
Vlast_lpf = Vin;
end
Vout = Vin.*dt + Vlast_lpf.*(1-dt);
                                               % dt is assumed to be small
Vlast_lpf = Vout;
```

9.10 Lin_comparator.m

% inverting comparator with linear range function [Vout]=lin_comparator(Vin)

global Vcmax Vcmin Vcb Gc

```
% Calculate output.
Vout=max(Vcmin, min(Vcmax, Vcb - Vin.*Gc));
```

9.11 Plot_volts.m

% Plot evolution of circuit voltages and optical input and output.

```
figure ('Name', 'Input Power (inv. wrt OP)')
plot(trange, Xrecord); % plot X/time for each neuron
grid
xlabel ('time');
ylabel ('input power, W');
figure ('Name', 'Preamp output')
plot(trange, Vprecord); % plot Vp/time for each neuron
grid
xlabel ('time');
ylabel ('preamp, V');
figure ('Name', 'High-pass output')
plot(trange, Vhpfrecord); % plot Vhpf/time for each neuron
grid
xlabel ('time');
ylabel ('high-pass, V');
figure ('Name', 'Comparator output (inv. wrt OP)')
plot(trange, Vcoutrecord); % plot Vcout/time for each neuron
grid
xlabel ('time');
ylabel ('comparator, V');
figure ('Name', 'Low-pass output (inv. wrt OP)')
plot(trange, Vlpfrecord); % plot Vlpf/time for each neuron
```


grid xlabel ('time'); ylabel ('low-pass, V'); figure ('Name', 'Inverter output') plot(trange, Vinvrecord); % plot Vinv/time for each neuron grid xlabel ('time'); ylabel ('inverter, V'); figure ('Name', 'Output Power') plot(trange, Yrecord); % plot Y/time for each neuron grid

xlabel ('time');
ylabel ('output power, W');

10 Appendix C

This appendix contains test results and code in Matlab 4.2.1c (Mac) for the lens system redesign.

10.1 Test Results

Lens Modelling Program V1.00

```
Written 1998 by Keith Symington
Using first 1 and second 1:
Warnings...
ERROR: System unsolvable.
Using first 1 and second 2:
Warnings...
ERROR: System unsolvable.
Using first 1 and second 3:
Warnings..
Optimal solution for f1=25, f2=80 is g=56.
Distance from VCSEL to LENS1: 19.047619 mm
Distance from LENS1 to DOE: 50.900000 mm
Distance from DOE to LENS2: 5.100000 mm
Distance from LENS2 to Image plane: 194.285714 mm
Total size of system: 269.333333 mm
Beam waist at LENS1: 5.163879 mm
Beam waist at LENS2: 7.628594 mm
Beam divergence of: 2.521339 degrees.
Beam waist at DOE: 7.404128 mm
Image size on image plane: -7.500000 mm
Calculations complete.
No errors encountered.
No warnings issued.
Using first 1 and second 4:
ERROR: System unsolvable.
Using first 1 and second 5:
Warnings ...
ERROR: System unsolvable.
Using first 2 and second 1:
Warnings..
ERROR: System unsolvable.
Using first 2 and second 2:
Warnings...
ERROR: System unsolvable.
Using first 2 and second 3:
Warnings ...
Optimal solution for f1=40, f2=80 is g=15.
Distance from VCSEL to LENS1: 29.841270 mm
Distance from LENS1 to DOE: 5.218750 mm
Distance from DOE to LENS2: 9.781250 mm
Distance from LENS2 to Image plane: 201.904762 mm
Total size of system: 246.746032 mm
Beam waist at LENS1: 6.673410 mm
Beam waist at LENS2: 6.268685 mm
Beam convergence of: 1.545839 degrees.
Beam waist at DOE: 6.532599 mm
Image size on image plane: -7.500000 mm
Calculations complete.
No errors encountered
No warnings issued.
Using first 2 and second 4:
Warnings...
Optimal solution for f1=40, f2=150 is g=131.
Distance from VCSEL to LENS1: 29.830508 mm
Distance from LENS1 to DOE: 5.255556 mm
Distance from DOE to LENS2: 125.744444 mm
Distance from LENS2 to Image plane: 378.813559 mm
Total size of system: 539.644068 mm
Beam waist at LENS1: 6.671905 mm
```

🤩 🌄

»

Beam waist at LENS2: 14.517242 mm Beam divergence of: 3.430308 degrees. Beam waist at DOE: 6.986650 mm Image size on image plane: -7.500000 mm Calculations complete. No errors encountered. No warnings issued. Using first 2 and second 5: Warnings.. Optimal solution for f1=40, f2=190 is q=197. Distance from VCSEL to LENS1: 29.898990 mm Distance from LENS1 to DOE: 5.020000 mm Distance from DOE to LENS2: 191.980000 mm Distance from LENS2 to Image plane: 477.878788 mm Total size of system: 704.77778 mm Beam waist at LENS1: 6.681482 mm Beam waist at LENS2: 20.951347 mm Beam divergence of: 4.148456 degrees. Beam waist at DOE: 7.045110 mm Image size on image plane: -7.500000 mm Calculations complete. No errors encountered. No warnings issued. Using first 3 and second 1: Warnings... ERROR: System unsolvable. Using first 3 and second 2: Warnings... ERROR: System unsolvable. Using first 3 and second 3: Warnings... ERROR: System unsolvable. Using first 3 and second 4: Warnings... ERROR: System unsolvable. Using first 3 and second 5: Warnings... ERROR: System unsolvable. Using first 4 and second 1: Warnings... ERROR: System unsolvable. Using first 4 and second 2: Warnings... ERROR: System unsolvable. Using first 4 and second 3: Warnings... ERROR: System unsolvable. Using first 4 and second 4: Warnings... ERROR: System unsolvable. Using first 4 and second 5: Warnings... ERROR: System unsolvable. Using first 5 and second 1: Warnings... ERROR: System unsolvable. Using first 5 and second 2: Warnings... ERROR: System unsolvable. Using first 5 and second 3: Warnings... ERROR: System unsolvable. Using first 5 and second 4: Warnings... ERROR: System unsolvable. Using first 5 and second 5: Warnings... ERROR: System unsolvable. The best combination is lens 2 first and lens 3 second with g at 15 mm. Lens Model: Program terminated successfully.

10.2 Lens_Model.m

```
% Lens Model V1 00
% 1998 Keith Symington
% This script processes and executes analysis of optical distances
 based on lens focal lengths and the diffractive optic element
8
% working distance.
% Initialise variables.
Startup;
% Create a main output window.
figure(...
       'Name',
                      'Lens Modelling Program V1.0', ...
       'Color'
                      [0 0 0], ...
      'NumberTitle', 'off');
hold on;
% Local record of best system.
bestLens1=0:
bestLens2=0;
OptimalG=0;
bestDist=0;
% Iterate all systems.
for LENS 1=1:length(lensSet)
  for LENS 2=1:length(lensSet)
      Set lens 1.
    f1=lensSet(1, LENS_1);
    dl=lensSet(2, LENS_1);
    f2=lensSet(1, LENS_2);
d2=lensSet(2, LENS_2);
         disp(sprintf('Using first %d and second %d:', LENS 1, LENS 2));
    % Consider all posibilities in current lens system.
         [currentD, TempG]=Search(wsize, wbeam, verbose, f1, d1, f2, d2, L, d, M, Tsize, Tbeam);
         if (currentD>bestDist)
           bestDist=currentD;
           OptimalG=TempG;
           bestLens1=LENS 1;
           bestLens2=LENS_2;
         end;
  end:
end;
 Print the best.
disp(sprintf('The best combination is lens %d first and lens %d second with g at %d
mm.',bestLens1, bestLens2, OptimalG));
% Sav bve.
disp('Lens Model: Program terminated successfully.');
10.3 Startup.m
\ensuremath{\$} Startup module cleans up and sets some fixed startup parameters.
clear all;
pack;
format compact;
format short;
% Clear screen and print program name.
clc;
disp('Lens Modelling Program V1.00')
disp('Written 1998 by Keith Symington');
disp(' ');
% Global variables: (not normally available in functions).
lensSet=[25, 40, 80, 150, 190;10, 15, 25, 30, 50];
L=187; % Working distance of DOE in mm.
                     % Displacement of apparent object in mm.
d=1.5;
M=-6;
                     % Magnification for entire system (image is inverted:
                     % image height over object height is negative)
Tsize=1000;
                     % Maximum system size in mm.
```

Tbeam=(pi/180)*10; % Beam divergence/convergence tolerance in radians. wsize=2; % Weight multiplier which weights the input when calculating the optimal for size. wbeam=1; % Weight multiplier which weights the input when calculating the optimal for

```
beam.
verbose=0; % A value other than zero outputs information at every stage.
```

10.4 Search.m

```
% Compute performs all the calculations for the opticals model.
% It can be run either silently or with output. The advantage of
% silent mode is that slower computers do not continually give output
% thus slowing things down.
function [bestdistance, OptimalG]=Search(wsize, wbeam, verbose, f1, d1, f2, d2, L, d, M, Tsize,
Tbeam)
% Setup parameters for return from compute.
searchdist=f1+f2;
results=zeros(1, searchdist);
bestdistance=0;
OptimalG=0;
% Search through all values of g.
for counter=1:searchdist
  % Compute value for current counter size.
  [thetadiv, totalSize, warnings, errors]=Compute(verbose, f1, d1, f2, d2, L, counter, d, M,
Tsize, Theam):
  % Calculate distance value for current variable.
  if ((errors+warnings)==0)
    results(1,
                                       counter) = ((((Tsize-totalSize)/Tsize)*100)*wsize)^2+((((Tbeam-
thetadiv)/Tbeam)*100)*wbeam)^2;
  end;
  % If this is the best value so far then store it.
  if (results(1, counter)>bestdistance)
    bestdistance=results(1, counter);
    OptimalG=counter;
    end;
end:
% Output the lens combination statistics.
if (bestdistance>0)
  fprintf('\nOptimal solution for f1=%d, f2=%d is g=%d.\n', f1, f2, OptimalG);
  [thetadiv, totalSize, warnings, errors]=Compute(1, f1, d1, f2, d2, L, OptimalG, d, M, Tsize,
Tbeam):
  % Best solution measure graph.
  title(sprintf('Best solution with f1=%d and f2=%d at g=%d',f1, f2, OptimalG));
  xlabel('LENS1 to LENS2 separation in mm (g)');
ylabel('Distance value');
  grid on;
  plot(results);
  pause(1);
else
  disp(' ');
  disp('ERROR: System unsolvable.');
disp('');
end;
10.5 Compute.m
\ensuremath{\$} Compute performs all the calculations for the opticals model.
\ensuremath{\$} It can be run either silently or with output. The advantage of
% silent mode is that slower computers do not continually give output
% thus slowing things down.
function [thetadiv, totalSize, warningFlag, errorFlag]=Compute(verbose, f1, d1, f2, d2, L, g, d,
M, Tsize, Tbeam)
% Parameter Check
 Check all set values for an error.
if (q>(f1+f2))
  disp('ERROR: Bounds check fail - g cannot exceed focal lengths of lenses 1 and 2: f1+f2 >= g');
  errorFlag=errorFlag+1;
  end:
% Check input values.
if (M>0)
  disp('WARNING: Magnification normally takes a negative value.');
  warningFlag=warningFlag+1;
  end;
% Fixed System variables: these are not normally altered.
Vsize=0.25;
                     % VCSEL size (square) in mm.
Vnx=8;
                     % Number of VCSELs in x direction.
Vny=6;
                    % Number of VCSELs in y direction.
% Beam divergence from VCSELs in radians.
theta=(pi/180)*8;
Tcomp=5;
                     % Minimum distance between components in mm.
Tf1=50;
                     % Maximum percentage by which the VCSEL->LENS1 distance can differ.
ddoe=22;
                     % Diameter of DOE in mm.
```

```
% Error logging.
errorFlag=0
warningFlag=0;
% VCSEL array to lens 1.
u1=((((f1*f2)/M)+(f1*(g-f2)))/(g-f2-f1));
if (verbose) fprintf('Distance from VCSEL to LENS1: %f mm\n', u1); end;
if (0>=u1)
 if (verbose) disp('ERROR: Bounds check fail - ul cannot have a negative focal length: ul > 0');
end:
  errorFlag=errorFlag+1;
  end;
if (Tcomp>u1)
  if (verbose) disp('WARNING: VCSEL too close to LENS1: Tcomp > ul'); end;
  warningFlag=warningFlag+1;
  end:
if (u1>(f1*(1+(Tf1/100)))) | ((f1*(1-(Tf1/100)))>u1)
 if (verbose) disp('WARNING: VCSEL to LENS1 distance is not within tolerance to f1.'); end;
  warningFlag=warningFlag+1;
  end;
% Lens 2 to image plane.
u2=g-((f1*u1)/(u1-f1));
M2=f2/(u2-f2);
r{=}u2{-}\left(L/M2\right); % This is position of DOE.
if (verbose) fprintf('Distance from LENS1 to DOE: %f mm\n', (g-r)); end;
if (0>r)
 if (verbose) disp('ERROR: Bounds check fail - r cannot take a negative value: r \ge 0); end;
  errorFlag=errorFlag+1;
  end;
if (r>=q)
 if (verbose) disp('ERROR: Bounds check fail - DOE must lie between LENS1 and LENS2: g > r');
end:
  errorFlag=errorFlag+1;
  end;
if (Tcomp>(g-r))
  if (verbose) disp('WARNING: LENS1 too close to DOE: Tcomp > (g-r)'); end;
  warningFlag=warningFlag+1;
  end;
if (verbose) fprintf('Distance from DOE to LENS2: %f mm\n', r); end;
if (Tcomp>r)
  if (verbose) disp('WARNING: DOE too close to LENS2: Tcomp > r'); end;
  warningFlag=warningFlag+1;
  end:
v_{2}=I_{1}/(1-(r/u_{2}));
if (verbose) fprintf('Distance from LENS2 to Image plane: %f mm\n', v2); end;
if (0>v2)
  if (verbose) disp('ERROR: Bounds check fail - distance from image plane to LENS2 cannot be
negative: v2 >= 0'); end;
  errorFlag=errorFlag+1;
  end;
if (Tcomp>v2)
  if (verbose) disp('WARNING: LENS2 too close to Image plane: Tcomp > v2'); end;
  warningFlag=warningFlag+1;
  end:
totalSize=u1+\alpha+v2:
if (verbose) fprintf('Total size of system: %f mm\n', totalSize); end;
if (totalSize>Tsize)
 if (verbose) disp('ERROR: Bounds check fail - system too large: u1+g+v2 > Tsize'); end;
  errorFlag=errorFlag+1;
  end:
% Beam waist at lens 1.
h1=sqrt((((Vnx*Vsize)^2)+((Vny*Vsize)^2)))/2;
p1=2*u1*tan((theta/2));
w1=2*((abs(p1)/2)+abs(h1));
if (verbose) fprintf('Beam waist at LENS1: %f mm\n', w1); end;
if (w1>d1)
  if (verbose) disp('ERROR: Bounds check fail - beam waist too large for LENS1: w1 > d1'); end;
  errorFlag=errorFlag+1;
  end;
if (d1>=w1) & (w1>=(d1*(0.9)))
  if (verbose) disp('WARNING: Beam waist w1 is within 10% of LENS1 diameter.'); end;
  warningFlag=warningFlag+1;
  end;
% Beam waist at lens 2.
h2=h1*((g-f1)/f1);
v_{1=1}/((1/f_{1}) - (1/u_{1}));
p2=abs(((u2/v1)*p1));
w^2=2*((abs(p^2)/2)+(abs(h^2)));
if (verbose) fprintf('Beam waist at LENS2: %f mm\n', w2); end;
if (w2>d2)
  if (verbose) disp('ERROR: Bounds check fail - beam waist too large for LENS2: w2 > d2'); end;
  errorFlag=errorFlag+1;
  end;
if (d2>=w2) & (w2>=(d2*(0.9)))
  if (verbose) disp('WARNING: Beam waist w2 is within 10% of LENS2 diameter.'); end;
```

1

```
warningFlag=warningFlag+1;
  end;
% Beam convergence/divergence.
thetadiv=2*atan((w2-w1)/(2*q));
% Determine convergence/divergence of beam.
if (0>thetadiv)
 if (verbose) fprintf('Beam convergence of: %f degrees.\n', (abs((thetadiv*180)/pi))); end;
end;
if (thetadiv>0)
 if (verbose) fprintf('Beam divergence of: %f degrees \n', (abs((thetadiv*180)/pi))); end;
end;
if (0==thetadiv)
 if (verbose) fprintf('Beam is collimated.\n'); end;
end:
if (abs(thetadiv)>Tbeam)
 if (verbose) disp('ERROR: Bounds check fail - divergence/convergence too great: |thetadiv| >
Tbeam'); end;
 errorFlag=errorFlag+1;
  end;
% Beam waist at DOE: Note that the conditions here exclude their being a focal point between
% LENS1 and LENS2 so we can therefore use simple trig to calculate the beam width.
wH=w1+2*tan(thetadiv/2)*(g-r);
if (verbose) fprintf('Beam waist at DOE: %f mm\n', wH); end;
if (wH>ddoe)
  if (verbose) disp('ERROR: Bounds check fail - beam waist too large for DOE: wH > ddoe'); end;
 errorFlag=errorFlag+1;
  end;
if (ddoe>=wH) & (wH>=(ddoe*(0.9)))
 if (verbose) disp('WARNING: Beam waist wH is within 10% of DOE diameter.'); end;
  warningFlag=warningFlag+1;
 end:
% Image size.
hI=(h2*M*f1)/(g-f1);
if (verbose) fprintf('Image size on image plane: %f mmn', hI); end;
% Final checks to ensure system OK.
if (verbose)
  disp('Calculations complete.');
  % If there are no errors then say so.
  if (errorFlag==0) disp('No errors encountered.');
 else fprintf('%d error(s) present in system.\n', errorFlag);
  end:
  \% If there are no warnings then say so.
  if (warningFlag==0) disp('No warnings issued.');
  else fprintf('%d warning(s) present in system.\n', warningFlag);
  end;
 disp(' ');
end;
```

11 Appendix D

C 🖶 😴

Detailed information on minimum and maximum detector sensitivities.

Detector	V _p max (V)	V _p min (V)	I _{cc1} min (μA)	I _{cc1} min (μA)
0	3.80	0.80	0.90	4.00
1	4.00	0.70	0.50	4.00
2	3.80	1.00	0.70	4.00
3	4.00	0.80	0.50	3.80
4	4.00	0.80	0.40	4.10
5	3.90	0.50	0.50	4.00
6	3.90	0.70	0.30	3.80
7	3.80	0.50	0.30	4.00
8	4.10	0.80	0.40	4.00
9	4.10	0.80	0.60	4.00
10	4.00	0.80	0.60	4.10
11	4.10	0.80	0.50	3.80
12	4.10	0.90	0.50	3.80
13	4.10	0.80	0.60	4.00
14	4.10	0.80	0.40	3.80
15	4.10	0.80	0.30	3.90
16	4.10	0.90	0.30	3.80
17	4.10	0.80	0.40	3.80
18	4.20	0.80	0.40	3.90
19	4.10	0.80	0.50	4.00
20	4.10	0.90	0.30	3.60
21	4.10	0.80	0.40	4.00
22	4.10	0.80	0.30	4.00
23	4.10	0.90	0.40	3.80
	4.40	0.00	0.40	1.00
24	4.10	0.80	0.40	4.00
25	4.10	0.80	0.50	3.80
26	4.10	0.80	0.40	4.00
27	4.10	0.80	0.50	4.00
28	4.10	0.80	0.40	3.90
29	4.10	4.10	0.05	0.40
31	4.10	0.80	0.40	4.00
01	4.10	0.00	0.40	4.20
32	4 10	0 80	0 40	4 10
33	4 20	0.00	0.30	4.10
34	4.10	0.80	0.50	3.90
35	4.20	4.20	0.05	0.48
36	4.10	0.90	0.60	4.00
37	4.20	0.90	0.50	4.20
38	4.20	0.90	0.30	3.80
39	4.20	0.90	0.50	3.90

40	4.30	0.90	0.40	3.90			
41	4.30	0.90	0.30	4.20			
42	4.20	0.90	0.40	4.20			
43	4.20	0.90	0.90	4.10			
44	4.30	1.00	0.50	4.20			
45	4.20	0.90	0.50	4.20			
46	4.20	0.90	0.40	4.10			
47	4.20	1.00	0.50	4.10			
Error ±	0.10	0.10	0.10	0.10			
_							
Minimum	3.80	0.50	0.30	3.60			
Average	4.10	0.83	0.46	3.98			
Maximum	4.30	1.00	0.90	4.20			
St. Dev.	0.12	0.10	0.14	0.14			
With Minimum Error (-0.1 from all values)							

	with winnin	um Error (-0.	1 from all value	S)					
Average	4.00	0.73	0.36	3.88					
	With Maximum Error (+0.1 on all values)								
Average	4.20	0.93	0.56	4.08					

12 Appendix E

. . T

Detailed results for examination of diffractive optic element (DOE).

Channel No.	2
Laser No.	23
I _{CC1} Error (±A)	2.00E-09

Optical Power (W)	3.00E-04	Error (±W)	1.90E-05
Drive Current (A)	5.30E-03	Error (±A)	1.00E-04

Detector Cu	rrent I _{CC1} (A	.)					
8.600E-08	3.115E-06	1.260E-07	1.110E-07	9.600E-08	7.900E-08	1.040E-07	8.700E-08
3.060E-06	1.580E-07	1.985E-06	3.195E-06	3.020E-06	3.105E-06	2.875E-06	2.333E-06
9.500E-08	1.736E-06	1.070E-07	8.800E-08	5.300E-08	7.200E-08	6.300E-08	5.700E-08
5.300E-08	3.070E-06	4.800E-08	-	-	-	-	-
6.000E-08	3.332E-06	8.500E-08	-	-	-	-	-
4.900E-08	3.180E-06	8.400E-08	-	-	-	-	•

Normalised Against Centre I_{CC1}

0.54	19.72	0.80	0.70	0.61	0.50	0.66	0.55
19.37	1.00	12.56	20.22	19.11	19.65	18.20	14.77
0.60	10.99	0.68	0.56	0.34	0.46	0.40	0.36
0.34	19.43	0.30	-	-	-	-	-
0.38	21.09	0.54	-	-	-	-	-
0.31	20.13	0.53	-	-	-	-	-

Channel No.	8			
Laser No.	9	Optical Power (W)	3.00E-04 Error (±W)	2.10E-05
I _{CC1} Error (±A)	2.00E-09	Drive Current (A)	5.50E-03 Error (±A)	1.00E-04

Detector Current I_{CC1} (A)

3.100E-06	2.763E-06	2.992E-06	2.910E-06	3.207E-06	2.942E-06	2.978E-06	1.550E-07
3.100E-08	6.400E-08	9.500E-08	6.300E-08	3.900E-08	3.900E-08	1.070E-07	3.057E-06
-	-	-	-	-	-	7.900E-08	3.016E-06
-	-	-	-	-	-	6.800E-08	3.258E-06
-	-	-	-	-	-	6.200E-08	3.154E-06
-	-	-	-	-	-	3.400E-08	3.729E-06

Normalised	Against Cer	ntre I _{CC1}					
20.00	17.83	19.30	18.77	20.69	18.98	19.21	1.00
0.20	0.41	0.61	0.41	0.25	0.25	0.69	19.72
-	-	-	-	-	-	0.51	19.46
-	-	-	-	-	-	0.44	21.02
-	-	-	-	-	-	0.40	20.35
-	-	-	-	-	-	0.22	24.06

Channel No.	15
Laser No.	20
I _{CC1} Error (±A)	2.00E-09

Optical Power (W)	3.00E-04 Error (±W)	2.80E-05
Drive Current (A)	5.10E-03 Error (±A)	1.00E-04

Detector Current I_{CC1} (A)

-	-	-	3.100E-08	3.047E-06	1.060E-07	-	-
1.160E-07	1.310E-07	8.100E-08	1.140E-07	3.058E-06	1.820E-07	1.120E-07	7.900E-08
2.906E-06	3.136E-06	2.982E-06	3.006E-06	1.660E-07	3.107E-06	3.120E-06	2.882E-06
6.000E-08	4.800E-08	4.200E-08	1.020E-07	2.973E-06	3.200E-08	6.800E-08	4.200E-08
-	-	-	3.000E-08	2.985E-06	4.600E-08	-	-
-	-	-	7.300E-08	3.227E-06	7.700E-08	-	-

Normalised Against Centre I_{CC1}

-	-	-	0.19	18.36	0.64	-	-
0.70	0.79	0.49	0.69	18.42	1.10	0.67	0.48
17.51	18.89	17.96	18.11	1.00	18.72	18.80	17.36
0.36	0.29	0.25	0.61	17.91	0.19	0.41	0.25
-	-	-	0.18	17.98	0.28	-	-
-	-	-	0.44	19.44	0.46	-	-

Channel No.	40
Laser No.	30
I _{CC1} Error (±A)	2.00E-09

±W) 2.10E-05
±A) 1.00E-04

Detector Current I_{CC1} (A)

-	3.500E-08	2.436E-06	9.900E-08	-	-	-	-
8.500E-08	1.010E-07	1.827E-06	1.790E-07	1.100E-07	8.500E-08	7.500E-08	1.010E-07
2.902E-06	2.735E-06	1.710E-07	3.048E-06	3.009E-06	2.893E-06	2.942E-06	2.453E-06
3.600E-08	9.400E-08	2.947E-06	9.500E-08	7.000E-08	1.900E-08	6.100E-08	5.300E-08
-	7.500E-08	2.930E-06	1.800E-08	-	-	-	-
-	6.300E-08	3.158E-06	7.300E-08	-	-	-	-

Normalised Against Centre I_{CC1}

-	0.20	14.25	0.58	-	-	-	-
0.50	0.59	10.68	1.05	0.64	0.50	0.44	0.59
16.97	15.99	1.00	17.82	17.60	16.92	17.20	14.35
0.21	0.55	17.23	0.56	0.41	0.11	0.36	0.31
-	0.44	17.13	0.11	-	-	-	-
-	0.37	18.47	0.43	-	-	-	-

Channel No.	39
Laser No.	56
I _{CC1} Error (±A)	2.00E-09

Optical Power (W)	3.00E-04	Error (±W)	3.40E-05
Drive Current (A)	5.10E-03	Error (±A)	1.00E-04

Detector Cu	rrent I _{CC1} (A	.)					
2.960E-06	3.200E-08	-	-	-	-	-	-
3.105E-06	8.600E-08	-	-	_	-		-
2.996E-06	7.400E-08	-	-	-	-	-	-
3.115E-06	1.080E-07	-	-	-	-	_	-
3.083E-06	1.950E-07	1.270E-07	4.500E-08	1.020E-07	1.090E-07	8.700E-08	5.300E-08
1.370E-07	3.183E-06	3.190E-06	2.986E-06	2.538E-06	1.787E-06	1.442E-06	1.852E-06

Normalised Against Centre I_{CC1}

21.61	0.23	-	-	-	-	-	-
22.66	0.63	-	-	-	-	-	-
21.87	0.54	-	-	-	-	-	-
22.74	0.79	-	-	-	-	-	-
22.50	1.42	0.93	0.33	0.74	0.80	0.64	0.39
1.00	23.23	23.28	21.80	18.53	13.04	10.53	13.52

Channel No.	27
Laser No.	49
I _{CC1} Error (±A)	2.00E-09

Optical Power (W)	3.00E-04 EI	rror (±W)	2.50E-05
Drive Current (A)	5.10E-03 EI	rror (±A)	1.00E-04

Detector Current I_{CC1} (A)

-	-	-	-	-	-	3.700E-08	2.369E-06
-	-	-	-	-	-	6.000E-08	2.516E-06
-	-	-	-	-	-	5.000E-08	2.478E-06
-	-	-	-	-	-	3.200E-08	2.574E-06
1.210E-07	9.600E-08	7.900E-08	5.200E-08	1.190E-07	8.700E-08	9.400E-08	2.576E-06
2.617E-06	2.474E-06	2.527E-06	2.213E-06	2.701E-06	2.535E-06	2.535E-06	1.320E-07

Normalised Against Centre I_{CC1}

-	-	-	-	-	-	0.28	17.95
-	-	-	-	-	-	0.45	19.06
-	-	-	-	-	-	0.38	18.77
-	-	-	-	-	-	0.24	19.50
0.92	0.73	0.60	0.39	0.90	0.66	0.71	19.52
19.83	18.74	19.14	16.77	20.46	19.20	19.20	1.00

Cross Analysis of Normalised Values I_{CC1} in X

x-7	x-6	x-5	x-4	x-3	x-2	x-1	х	x+1	x+2	x+3	x+4	x+5	x+6	x+7	Channel
-	-	-	-	-	-	19.37	1.00	12.56	20.22	19.11	19.65	18.20	14.77	-	2
20.00	17.83	19.30	18.77	20.69	18.98	19.21	1.00	-	-	-	-	-	-	-	8
-	-	-	17.51	18.89	17.96	18.11	1.00	18.72	18.80	17.36	-	-	-	-	15
19.83	18.74	19.14	16.77	20.46	19.20	19.20	1.00	-	-	-	-	-	-	-	27
-	-	-	-	-	-	-	1.00	23.23	23.28	21.80	18.53	13.04	10.53	13.52	39
-	-	-	-	-	16.97	15.99	1.00	17.82	17.60	16.92	17.20	14.35	-	-	40
Average val	lue														
19.913	18.284	19.224	17.682	20.015	18.280	18.377	1.000	18.085	19.974	18.797	18.461	15.195	12.646	13.518	All

Cross Analysis of Normalised Values I_{CC1} in Y

y-5	y-4	y-3	y-2	y-1	у	y+1	y+2	y+3	y+4	y+5	Channel
-	20.13	21.09	19.43	10.99	1.00	19.72	-	-	-	-	2
24.06	20.35	21.02	19.46	19.72	1.00	-	-	-	-	-	8
-	-	19.44	17.98	17.91	1.00	18.42	18.36	-	-	-	15
-	-	-	-	-	1.00	19.52	19.50	18.77	19.06	17.95	27
-	-	-	-	-	1.00	22.50	22.74	21.87	22.66	21.61	39
-	-	18.47	17.13	17.23	1.00	10.68	14.25	-	-	-	40
Average valu	Je										
24.058	20.237	20.004	18.501	16.463	1.000	18.168	18.710	20.321	20.862	19.776	All

13 Appendix F

Data sheets for amplifier used in amp-board and neural switch card.

LM124, LM124A, LM224, LM224, LM224A LM324, LM324A, LM324Y, LM2902, LM29020 QUADRUPLE OPERATIONAL AMPLIFIER 8.03680-58701246En 1975- REVISED SEPTENDER 1986

.

					LMI	24. LM224	- T		LM324 LM2902, I		2, LM2902	ia		
	PARAMETER	TEST COND	DITIONST	T _A ‡	MIN	TYPS	MAX	MIN	TYP§	MAX	MIN	TYPS	MAX	UNIT
		Voo = 5 V to MA	×	25°C		3	5		3	7		3	7	- 11
0	Input offset voltage	VIC = VICRMIN,	Vo=1.4 V	Full range			7			9			10	mv
				25°C		2	30		2	50	_	2	50	F A
С	Input offset current	V _O = 1.4 V	1	Full range			100			150			300	
				25°C		- 20	- 150		- 20	- 250		-20	- 250	
3	Input bias current	V _O = 1.4 V		Full range			-300			~ 500			- 500	
	Common-mode input			25°C	0 to V _{CC} - 1.5			0 to V _{CC} - 1.5			0 to V _{CC} – 1 .5			v
ICR	voltage range			Full range	0 10 V _{CC} - 2			0 to V _{CC} - 2			0 to V _{CC} -2			
	Rι_ = 2 kΩ			25°C	VCC- 1.5			VCC- 1.5						i I
он	High-level output voltage	RL = 10 kΩ		25°C					-		Vcc-1 .5			v
	V _{CC} = MAX, B		$R_L = 2 k\Omega$	Full range	26			26			22			
		$V_{CC} = MAX$, $H_L = 2 R\Omega P$ $V_{CC} = MAX$, $R_L \ge 10 k\Omega$ F		Full range	27	28		27	28		23	24		
)L	Low-level output voltage	FRL≤10 kΩ		Full range		5	20		5	20		5	100	mV
	Large-signal differential	V _{CC} = 15 V, V _O	= 1 V to 11 V,	25°C	50	100		25	100			100		V/mV
/D	voltage amplification	RL⊨≥2kΩ		Full range	25			15			15			<u> </u>
MRR	Common-mode rejection ratio	VIC = VICRmin		25°C	70	60		65	80		50	80		dB
SVR	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{1O})			25°C	65	100		65	100		50	100		dB
01/VO2	Crosstalk attenuation	f = 1 kHz to 20 k	Hz	25°C		120			120			120		dB
		Vcc = 15 V	VID = 1 V.	25°C	-20	- 30	-60	-20	- 30	-60	- 20	- 30	- 60	
		$V_{O} = 0$		Full range	-10			-10			-10			mA
2	Output current	V _{CC} = 15 V.	V _{ID} = -1 V,	25°C	10	20		10	20	_	10	20		
		V _Q = 15 V		Full range	5			5		_	5	-		
		$V_{ID} = -1 V$	V _O = 200 mV	25°C	12	30		12	30		<u> </u>	30		μА
os	Short-circuit output current	V _{CC} at 5 V, GND at -5 V	V _O = 0	25°C		±40	±60		±40	±60		±40	±60	mA
		V _O = 2.5 V.	No load	Full range		0.7	1.2		0.7	1.2	<u> </u>	0.7	1.2	
cc	Supply current (four amplifiers)	V _{CC} = MAX, V _O = 0.5 V _{CC} ,	No load	Full range		1.4	3		1.4	3		1.4	3	mA

 \pm Full range is -55°C to 125°C for LM124, -25°C to 85°C for LM224, 0°C to 70°C for LM324, and - § All typical values are at T_A = 25°C.

bsolute maximum ratings over operating fre	se-air temperature r	ange (unless oth	herwise no	oted)†
		LM124, LM124A LM224, LM224A LM324, LM324A	LM2902, LM2902Q	UNIT
Supply voltage, VCC (see Note 1)		32	26	>
Differential input voltage, VID (see Note 2)		±32	±26	>
nput voltage. VI (either input)		-0.3 to 32	-0.3 to 26	٨
buration of output short circuit (one amplifier) to ground at (or beld $C_C \leq ^{-5}$ V (see Note 3)	ow) TA = 25°C,	unlimited	unlimited	
Continuous total dissipation		See Dissipatio	n Rating Table	
	LM124, LM124A	-55 to 125		
,	LM224, LM224A	-25 to 85		ç
Dperating free-air temperature range, IA	LM324, LM324A	0 to 70		¢
	LM2902, LM2902Q		-40 to 125	
storage temperature range		-65 to 150	-65 to 150	ပ္
Case temperature for 60 seconds	FK package	260		ပ္
ead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or W package	300	300	ů
.ead temperature 1.6 mm (1/16 inch) from case for 10 seconds	D, DB, N, or PW package	260	260	ပ္
Stresses beyond those listed undar "assume in multimating" in the control operation of the operation of the operation and the control operation of the operation of the control operation operation of the control operation operation operation operation of the control operation operation of the control operation	ay cause permanent darriag is beyond those indicated ur ended periods may affect dev C specified for the measuren	e to the device. These ar nder "recommended op vice reliability. ment of [OS] arc with res	e stress ratings orating conditio pect to the netw	s only, ar on s' is n vork GNI

	TA = 85°C POWER RATING	497 mW	403 mW	713 mW	
and eventual destruc	TA = 70°C POWER RATING	611 mW	496 mW	878 mW	
SIPATION RATING	DERATE ABOVE T _A	32°C	25°C	68°C	
N + with respect to to VCC can cause DIS	DERATING FACTOR	7.6 mW/°C	6.2 mW/°C	11.0 mW/"C	
ifferential voltages are at hort circuits from outputs	TA < 25°C POWER RATING	900 mW	775 mW	900 mW	
- ci m - i	PACKAGE	٥	DB	¥	

TA = 125°C POWER RATING

A/N N/A

273 mW 273 mW

497 mW 403 mW 713 mW 531 mW 596 mW 364 mW 364 mW

611 mW 496 mW 878 mW 878 mW 654 mW 734 mW 448 mW 636 mW

32°C 25°C 68°C 88°C 25°C 25°C 37°C

D DB FK J (LM124_) J (all others)

11.0 mW/°C 8.2 mW/°C 9.2 mW/°C 5.6 mW/°C 5.6 mW/°C 8.0 mW/°C

900 mW 900 mW 700 mW 700 mW

z≧s

N/A N/A N/A 196 mW

TS	, TEXAS 7526
XAS	03 • DALLAS
STRU	ICE BOX 6553
7 =	POST OFF

50

.

		F	* CONDITIONO			M324Y		
	rankme i En				NIW	ЧYР	МАХ	LIND
VIO	Input offset voltage					en	2	È
10	Input offset current	VCC = 5 V to MAX,	VIC = VICRmin,	V0=1.4 V		N	22	ě
¹ IB	Input bias current		į			-20	-250	۲
VICR	Common-mode input voltage range	VCC = 5 V to MAX			0 to VCC-1.5			>
ЧОН	High-level output voltage	RL = 10 kΩ			VCC-1.5			>
VOL	Low-level output voltage	RL ≤ 10 kΩ				s	8	Ę
AVD	Large-signal differential voltage amplification	Vcc = 15 V,	VO = 1 V to 11 V,	RL≥2kΩ	15	ē		Vm/V
CMRR	Common-mode rejection rallo	VIC = VICRMIN	-		33	8		뜅
RVB	Supply-voltage rejection ratio (ΔVCC±/ΔVIO)				59	<u>10</u>		æ
		VCC = 15 V.	VID = 1 V,	VO = 0	-20	-30	8-	
0	Output current	V _{CC} = 15 V,	VID = -1 V.	V0 = 15 V	10	8		٩W
		V _{ID} = 1 V.	Vg = 200 mV		5	8		
SO	Short-circuit output current	VCC at 5 V,	GND at -5 V,	VO=0		±40	99∓	Æ
00	Supply surrant (four smallflare)	VO = 2.5 VCC,	No load			0.7	1,2	•
3	fermindum mort trained fiddeo	VCC = MAX.	Vn = 0.5 Vnn	No load		:	"	₹ E

	8		
	es es		
	ž		
	Ę		
	ss		
	- Sec		
	e n		
	1ag	•	
	2		
	lğ		
	e i		
	Įğ		
	ιż		
	Ĕ		
	8		
	2		
i	Ž		
	ž		
	Suc		
	ŧ		
	5		
	^b		
	Ę		
	g		
	er		
	Š		
	Der		
	BSU		
	Шe	>	
	are	8	
	ŝ	sis	
	risti	ose	
	Icte	Ē	
	Jará	D D	
	흐	stir	
	4	₽	

TEXAS INSTRUMENTS ST OFFICE BOX 65503 • DALLAS, TEXA5 75

POST OFFIC

	ONDANETEO		+	- +	1	.M124A			4224A		L	M324A			
	PARAMETER	TEST CON	DITIONS	TA+	MIN	түр§	MAX	MIN	түр§	MAX	MIN	TYPS	MAX	UNIT	
40	ioput offert voltage	V _{CC} = 5 V to 30	v.	25°C			2		2	3		2	3	-24	
10	inportonaet voltage	VIC = VICRmin,	V _O = 1.4 V	Full range			4			4			5	mv	
10	Input offset current	Vo-14V		25°C			10			2	15	2	30		
0		10-111		Full range			30			30			75	IIA	
	loout bias current	Vo - 14 V		25°C			- 50		- 15	- 80		- 15	- 100	- 1	
в	inperolas content	10-13-1		Full range			- 100			- 100			-200	na	
				25°C	0 to			0 to			0 to				
/ICB	Common-mode input	Vcc = 30 V			Vcc ~ 1.5			VCC~1.5			V _{CC} -1.5			v	
	voltage range			Full range	0 to			0 to			0 to				
		P 240		0590	VCC-2			VCC-2			VCC-2				
1000	High Journ output waltage	HL = 2 KM	P 240	20°C	ACC-172			ACC-12			VCC-1.5				
ЮН	riigiineveroutput voitage	VCC = 30 V.		Fuil range	20			20			20			v	
	Low-level output voltage	Bi < 10 kQ	11 2 10 144	Full range	21		20		20	20		20	20	mV	
- QL	Large-signal differential	Vcc = 15 V. Vo	= 1 V to 11 V.									····			
∿vD	voltage amplification	RL=≥2 kΩ		Full range	25			25			15			V/mV	L
MAR	Common-mode rejection ratio	VIC = VICRmin		25°C	70			70	80		65	80		dB	1
kevo	Supply-voltage rejection ratio			25%0	65			65	100		65	100		dB	
-ovn	(AVCC/AVIO)			200				~	100			100		00	
V01/V02	Crosstalk attenuation	f = 1 kHz to 20 k	Hz	25°C		120			120			120		dB	
		V _{CC} = 15 V.	V _{ID} = 1 V.	25°C	-20			- 20	- 30	-60	-20	- 30	-60		L
		V _O = 0		Full range	~ 10			- 10			- 10			må	Ľ
ю	Output current	V _{CC} = 15 V.	$V_{ID} = -1 V_{c}$	25°C	10			10	20		10	20		111/3	L
		V _O = 15 V		Full range	5			5			5				
		V _{ID} = -1 V,	V _O = 200 mV	25°C	12			12	30		12	30		μA	
os	Short-circuit output current	V _{CC} at 5 V, V _O = 0	GND at -5 V,	25°C		±40	±60		±40	±60		±40	±60	mA	
		V _O = 2.5 V,	No load	Full range		0.7	1.2		0.7	1.2		0.7	1.2		1
cc	Supply current (four amplifiers)	V _{CC} # 30 V,	V _O = 15 V,	Full range		1.4	3		1.4	3		1.4	3	mA	

LM124, LM1244, LM224, LM224, LM224 LM324, LM324A, LM224, LM2902, LM29020 QUADRUPLE OPERATIONAL AMPLIFIERS SLOSGODE SEPTEMBER 1872 - REVISED SEPTEMBER 1873 - REVISED SEPTEM Template Release Date: 7-11-94

14 Appendix G

			P _{req} at	50µW			P _{req} at 8	300µW	
Channel	VCSEL	$P_L(\mu W)$	$P_U(\mu W)$	I _U (mA)	I _{req} (mA)	$P_L(\mu W)$	$P_U(\mu W)$	I _U (mA)	I _{req} (mA)
0	21	43	81	4.8	4.379	755	807	9.0	8.475
1	24	28	65	4.6	4.268	753	806	9.2	8.668
2	23	20	60	4.2	3.919	772	823	8.0	7.470
3	16	15	54	4.0	3.758	770	822	7.2	6.720
4	29	25	68	4.2	3.888	777	827	8.0	7.454
5	15	26	74	4.4	4.061	797	849	9.2	8.511
6	22	25	75	4.2	3.872	779	828	6.8	6.314
7	14	35	82	4.6	4.216	766	826	8.2	7.663
8	9	38	87	4.6	4.202	775	817	8.6	8.046
9	12	17	61	3.8	3.542	753	810	6.6	6.200
10	13	41	78	5.0	4.579	789	832	10.2	9.493
11	20	34	91	4.4	4.020	754	801	7.2	6.796
12	11	31	70	4.2	3.870	760	807	8.4	7.905
13	19	19	66	4.0	3.713	788	835	7.4	6.848
14	10	18	65	4.2	3.906	780	813	7.0	6.537
15	28	20	63	4.2	3.910	/94	83/	/.8	7.204
16	35 19	16	5/	4.4	4.123	792	835	8.6	7.968
1/	18	21	70	4.0	3.088	701	833	0.2	5./51 8.722
10	17	20	75	4.4	4.005	791	042	9.4	0.722
19	21	23	/4 82	4.2	2.8/4	791	000 015	7.0	7.218
20	20	33	02 81	4.2	3.643	764	813	7.0	7.303 8.453
21	33	45	107	4.0	3 982	763	812	6.8	6 358
23	34	16	51	4.2	3.961	787	836	7.8	7.228
24	44	-	50	3.8	3.589	772	824	6.8	6.335
25	41	25	74	4.4	4.063	773	816	8.2	7.674
26	42	13	51	4.0	3.773	754	805	6.4	6.026
27	49	20	60	4.2	3.919	788	829	8.2	7.611
28	36	15	55	4.2	3.943	-	800	8.0	7.556
29	50	19	62	4.4	4.103	779	821	7.4	6.894
30	43	26	79	4.2	3.863	754	803	6.4	6.033
31	51	18	51	4.2	3.961	755	811	8.4	7.896
32	46	18	59	4.0	3.736	753	804	7.6	7.163
33	52	35	94	4.0	3.637	744	802	6.2	5.849
34	53	18	53	4.2	3.950	763	814	7.6	7.126
35	45	45	72	5.4	4.946	793	832	11.0	10.234
36	54	37	80	4.6	4.213	776	825	9.4	8.781
37	55	23	54	4.6	4.320	786	837	9.0	8.363
38	51	-	50	4.6	4.344	795	846	9.2	8.519
39	56	24	/3	4.4	4.06/	/91	829	7.2	6.656
40	30	17	55	4.2	3.942	//6	826	/.8	/.268
41	4/	-	50	3.8	3.589	799	844	1.2	0.015
42	48	2/		4.8	4.494	761	010	9.4	6 201
43	38	30	8/	4.0	3.000	7/01	811 812	0.8 6.4	6.011
44	39	21	80	4.2	3.542	743	801	0.4 7 Q	7 362
43	32	46	103	4.0 4.1	3 980	795	843	7.0 7.1	6.820
	21		103	4.2	2 705	700	0-1J 020	7.4	6.665

15 Appendix H

C 🖶 😴

If a channel was not working properly, no measurements were made.

Detector	Total Photocurrent (μA)	Detectors Used	μA/Detector
0	1.93	-	-
1	24.33	12	1.865
2	18.81	12	1.405
3	19.43	11	1.589
4	18.69	12	1.395
5	17.60	11	1.423
6	22.43	12	1.707
7	25.04	12	1.924
8	17.79	12	1.320
9	23.47	12	1.793
10	19.00	12	1.421
11	1.92	-	-
12	20.78	12	1.569
13	17.58	11	1.421
14	1.92	-	-
15	21.12	12	1.598
16	19.48	12	1.461
17	1.92	-	-
18	21.98	12	1.669
19	24.48	11	2.048
20	24.07	12	1.843
21	1.91	-	-
22	20.90	12	1.579
23	19.80	12	1.488
24	17.46	11	1.410
25	14.81	11	1.169
26	4.93	11	0.271
27	1.91	-	-
28	21.27	11	1.756
29	1.92	-	-
30	17.81	11	1.442
31	1.92	-	-
32	17.03	11	1.371
33	19.57	11	1.602
34	20.19	11	1.658
35	17.41	-	-
36	1.93	-	-
3/	13.07	10	1.112
38 20	19.89	11	1.631
39	20.44	11	1.681
40	1.91	-	-
41	1.91	- 10	-
42	33.20	12	2.609
43	1.91	- 10	-
44	17.52	12	1.298
40	20.03	10	1.090
 ⊿7	20.62	12	1.470
7/	20.02	14	1.550

16 Appendix I

This section contains further results from system testing.

The next test sequence gave a valid result without optimisation of V_{ref} from equation 33.

			R	equ	lest							Res	spor	ise				
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0]	
8	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	
16	0	0	0	0	0	0	1	0	16	0	0	0	0	0	0	0	0	
24	0	0	0	0	0	0	0	0	→ 24	0	0	0	0	0	0	0	0	
32	0	0	0	0	0	0	1	0	32	0	0	0	0	0	0	0	0	
40	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0	
V _{ref}	. = (0.78	3V									Ε	αι	ıat	ioi	า 3	5	

Unfortunately, V_{ref} had to be adjusted to 0.62V before a solution was found for the next request matrix.

			R	equ	lest							Res	spor	nse			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	1	8	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	\Rightarrow 24	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	1	32	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	1	40	0	0	0	0	0	0	0	1
V _{ref}	. =	0.62	2V									E	qı	lat	ioi	1 3	6

 V_{ref} unadjusted at 0.62V.

			R	equ	iest							Res	por	ise			
0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	1	0	0	0	8	0	0	0	0	1	0	0	0
16	0	0	1	0	0	0	0	0	16	0	0	1	0	0	0	0	0
24	0	0	0	0	0	0	0	0	→ 24	0	0	0	0	0	0	0	0
32	0	0	1	0	0	0	0	0	32	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0
V_{ref}	. =	0.62	2V									Е	αι	ıat	ioi	n 3	7

 V_{ref} again worked at 0.62V.

			R	lequ	iest							Res	spor	nse			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	→ 24	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	1	1	32	0	0	0	0	0	0	1	0
40	0	0	0	0	0	1	0	1	40	0	0	0	0	0	1	0	0
V_{ref}	. =	0.62	2V									Е	αι	ıat	ioı	n 3	8

Still with V_{ref} at 0.62V...

			R	lequ	lest							Res	por	nse			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
8	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	\Rightarrow 24	0	0	0	0	0	0	0	0
32	0	0	1	0	0	0	1	1	32	0	0	1	0	0	0	0	0
40	0	0	0	0	0	1	0	1	40	0	0	0	0	0	1	0	0
V _{ref}	. =	0.62	2V									Е	qι	ıat	ioi	n 3	9

 V_{ref} had to be increased to 0.66V before the network's output became valid.

Careful adjustment of V_{ref} to 0.79V gave a good solution. The induced photocurrent was 1.89 to 1.90µA.

Leaving V_{ref} at 0.79V, a valid result was still received.

			R	lequ	iest							Res	por	ise			
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	0	0	0	1	8	0	0	0	0	0	0	0	1
16	0	0	0	0	0	0	1	0	16	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	→ 24	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	1	1	32	0	0	0	0	0	0	0	0
40	0	0	0	0	0	1	0	1_	40	0	0	0	0	0	1	0	0
V _{ref}	- =	0.79	₽V									Е	qι	ıat	ioı	า 4	2

Fine adjustment of V_{ref} to 0.79V gave a valid result.

			R	lequ	lest							Res	spor	ise			
0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	1	0	0	1	8	0	0	0	0	1	0	0	0
16	0	0	1	0	0	0	1	0	16	0	0	0	0	0	0	1	0
24	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0
32	0	0	1	0	0	0	0	1	32	0	0	1	0	0	0	0	0
40	0	0	0	0	0	1	0	1	40	0	0	0	0	0	1	0	0
V_{ref}	- =	0.79	₽V									Е	qı	ıat	ioı	า 4	3

Adjustment of the above by the addition of one other request (detector 38) resulted in an invalid solution. It was possible to adjust V_{ref} to give a valid solution; however, the selection of neurons which remained on proved very unstable. Examination of the system indicated that detector saturation could be causing a problem, thus photographic film was inserted which absorbed ~33% of the optical power throughput. This resulted in a stable solution after slight adjustment of V_{ref} :

			R	equ	lest							Res	por	ise			
0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	1	0	0	1	8	0	0	0	0	1	0	0	0
16	0	0	1	0	0	0	1	0	16	0	0	1	0	0	0	0	0
24	0	0	0	0	0	0	0	0	→ 24	0	0	0	0	0	0	0	0
32	0	0	1	0	0	0	1	1	32	0	0	0	0	0	0	0	1
40	0	0	0	0	0	1	0	1	40	0	0	0	0	0	1	0	0
V _{ref}	. =	0.76	5V									Е	αι	ıat	ioi	า 4	4

Without adjustment, another valid solution is shown overleaf.

Response

			R	equ	lest				
0	0	0	0	0	0	0	1	0	

0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0]
8	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
16	0	0	1	0	0	0	0	0	16	0	0	1	0	0	0	0	0
24	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0
32	0	0	1	0	0	0	1	1	32	0	0	0	0	0	0	0	1
40	0	0	0	0	0	1	0	1	40	0	0	0	0	0	1	0	0
V_{ref}	r =	0.70	5V									Ε	qu	at	ior	า 4	5

All went well until fewer neurons were requested.

			R	lequ	lest							Res	por	ise			
0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	1	0	0	1	8	0	0	0	0	1	0	0	1
16	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	\Rightarrow 24	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	32	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0	0	0
V_{ref}	- =	0.76	5V									Е	qι	ıat	ior	า 4	6

This solution proved wrong at V_{ref} =0.76V, the reasons for which are explained in section 4.7. Adjustment did reveal that this system could be solved at this power level but V_{ref} needed to be 0.91V before it gave a valid solution: a value at which all previous tests did not work.