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Smart Pixel Optoelectronic Neural Networks

1 Abstract

Control tasks beyond the scope of serial processors can be performed using
parallel systems such as neural networks. Current neural systems suffer
serious interconnection problems on silicon but by employing spatial optics to
interconnect neurons this limitation can be overcome. This report examines
both the neural network architectures and smart pixel interconnection
technologies that can be used to construct them. In conclusion, it examines a
sample system and considers the potential applications of a smart pixel
optical neural network.
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3 Introduction

3.1 On Highly Parallel Systems

Traditional computer systems, as Performance v. Processors
found in widespread use today, Nuri

have always been sequential in Pf°°‘:5°fs £l pai
nature with one instruction being 1,000,000 " - v eeee e AR :
rigidly performed after the other. s : :
As the power of these computers Z : :
has increased by between 20% and 1,000 |- - - :
35% per year over the last few soquent™ - f :
decades, it will not be long before symmetry
the sequential computer reaches its : :
physical computational limit — the 0 p o
speed of light. To sustain such a Processor parfammanEsi.
rate of growth new computing Figure 1

techniques will need to be  sased on a diagram by Danny Hilis, architect of the connection machines.
developed and the only way

forward will be the implementation of parallel architectures. Figure 1 shows
the approaches taken by various computer systems towards performance “El
Dorado” [5].

Turning to nature for inspiration, a good example of a parallel architecture
may be found in the brain. In computer science terms a human brain can be
considered as containing in the region of 10" processors working in parallel.
Each processor, or neuron, has its own very simple task to perform and is part
of a highly interconnected system. It is this extreme interconnectivity within
the network that is the attraction of a neural system since noise or a few errors
will probably be inconsequential. An entire calculation on a sequential system
can be ruined by a single bit error but on a neural system it simply results in
graceful degradation. This fault tolerance creates a robust system which is
the major attraction of artificial neural networks (ANNS).

Applying one of today’s most powerful computers to a task such as image
recognition begins to highlight the shortcomings of current computer
technology: even though the cycle times of a silicon system are 10° times that
of the brain, the brain is still extremely fast at a task like image recognition.
Combining the speed of silicon and the tolerance of a neural system could
lead to an evolution in computer architecture.

3.2 Report Outline

It is the intention of this report to examine the component parts of
optoelectronic neural networks which are implemented using smart pixels.
This report divides up the system into its two component parts, examines
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them separately and then recombines them to consider the possible
implementation advantages of a combined solution. This results in the
following 3 chapters:

Artificial Neural Networks: An examination of artificial neural networks
ranging from simple interconnection schemes to multi-layer perceptrons
(MLPs) and learning vector quantisation (LVQ) including their advantages and
disadvantages.

Smart Pixels: Analysis of what a smart pixel is and currently viable
implementations. Information on the strengths and weaknesses of each type
is also included here for both monolithic and hybrid approaches.

Optoelectronic Networks: A culmination of the knowledge from the previous
two chapters with an examination of how smart pixels could revolutionise
neural network implementations. A sample network and various applications
are also briefly considered.
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4 Artificial Neural Networks

4.1 Introduction

Artificial neural networks were designed to be an analogy (if a rather poor
one) of the human brain, which is a massively parallel system, because the
human brain is perhaps one of the most robust and fault tolerant pattern
recognition systems known. However, ANNs have not quite reached the size
and complexity of the human brain yet. Even so, ANNs have proved
themselves to be competent at pattern recognition. What makes ANNs so
interesting though is their power of discrimination — a characteristic not
exhibited by stochastic techniques. In addition to this trait, they also have the
power to learn.

This analogy has now developed beyond the point of a copy of the human
brain into a field in its own right and today ANNs are generally referred to
simply as neural networks (NN) [57].

4.2 The Node - An Artificial Neuron

A node, as shown in figure 2, is the basic
building block of neural networks. The
node was developed as an approximation
of a neuron in nature.

A node takes n (X;,...,X,) inputs and
multiplies its strength by a scalar weight ¥,
known as the synaptic weight. This allows
a certain input to have more importance
than others. These inputs are then Figure 2
summed by the node and put through & fres s s feois s e e reseme %
transfer function f{x). The transfer function response based on the in-buit unction fiy.

is node dependent and can be almost

anything desired. The result is then returned on a single output Y. Figure 3

overleaf shows some common transfer functions.

The node’s output depends on its transfer function and sum of inputs. For
example, the linear threshold transfer function would output either a -1 or 1
dependent on input. On the other hand, a linear decision neuron would
smooth the response of the node providing not just the values of -1 and 1 but
also all the values in between.

One of the most frequently used transfer f( ) 1
functions is the sigmoid function, as shown
in equation 1, where o determines how
rapid the function’s response is.

Equation 1
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A
Threshold Linear Threshold
Figure 3

The above are all examples of threshold functions f(x). Please note that the minimum and maximum values shown here are

considered to be normalised: i.e. -1 and 1 respectively.
The advantage of the sigmoid function is that it has smooth transition limits.
Another similar function of note which is widely used is the tangent hyperbolic
function.

The node is the basic building block of neural networks and by combining
them correctly, altering their functions and weighting methods a variety of
different systems can be built up which may be put to use in a great deal of
applications.

4.3 Neural Network Types

There are two basic types of neural networks: ones which take binary input
and ones which take continuous valued input.

Neural Network Name Input Type Training Method
Hopfield Net Binary Supervised
Hamming Net Binary Supervised
Carpenter/Grossberg Classifier Binary Unsupervised
Perceptron Continuous  Supervised
Multi-Layer Perceptron Continuous  Supervised

Kohonen Self-Organising Feature Maps  Continuous  Unsupervised

Table 1
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These networks can again be sub-classified dependent on the procedure
used to train them: supervised or unsupervised learning. Table 1 shows the
properties of some common neural networks.

Unsupervised learning is where the nodes compete for data: no desired
response is applied since there is no target set. Supervised learning is where
there is a specific response which must be achieved. A network that has been
trained in a supervised manner is good for modelling whereas a network
trained in an unsupervised manner is good for exploratory work.

4.4 Simple Networks

This section mentions the basic structures found in all neural networks and
how they are classified.

4.4.1 Outstar Networks

An outstar network (as shown in
figure 4) learns and recalls a spatial |
input pattern which is impressed onto
an array of neurons. To learn, X is
activated which turns on the
command neuron (. The pattern
which is currently on X; to X, is then
learned and stored by the neurons I
to n. To recall, the command neuron [¥*—>
then reactivates the  neurons
proportionally to the previously
learned input. Please see [24], [25]
and [26] for further information.

Outstar Network

Neuron

Figure 4

Outstar network for spatial pattern recognition.

4.4.2 Avalanche Networks

An avalanche network is designed to recall space-time patterns. It can be
though of as a series of outstar networks (see 4.4.1) activated sequentially in
time by only one controlling neuron. Read-out produces a short term memory
pattern across the neurons proportional to the original pattern. Please see
[24], [25] and [26] for further information.

4.4.3 Instar Networks

The instar network, as can be seen in |
figure 5, is used for recognising
spatial input patterns. An input
pattern is applied to neurons X; to X, | x,
which signal the central neuron 0.
Activation of the central neuron then
causes it to go towards a steady state
proportional to its inputs. To
recognise, the pattern is replayed to
the central neuron and if the inputs Figure 5

The Instar neural network: used for spatial pattern recognition.

Instar Network

Neuron
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are over a certain threshold then the neuron fires. Please see [24], [25] and
[26] for further information.

4.5 The Perceptron

Rosenblatt [27] invented many variations of a simple network which he called
the perceptron. The perceptron is simply a layer of input neurons connected
directly to a layer of output neurons and is especially suited for simple pattern
classification problems. Please examine figure 6.

Perceptron Networks XOR Classification
Problem

X, Neuron
><>—> Y Single Layer @
X

X O
____________________________________________ Two Layer
O
g @JE
: )
g o}(o)

Three Layer

Figure 6

This figure shows the three major types of perceptron network and their response to the XOR classification problem (see text for details).

The XOR (exclusive or) problem used to illustrate network performance here
is where two continuous valued inputs X; and X, are to be classified into a
category A or B which is output on Y. In the diagrams, the actual output Y
from the neuron is indicated by the two contrastingly shaded regions: the
value of which is irrelevant. The target classifications of A and B are also
shown here and, if the system is to function correctly, both A circles must be
bounded by only one shade.

A single layer perceptron is the simplest of all and consists of only one
neuron. Given the two inputs X; and X, it is only capable of classifying
information with a single hyperplane line. This is not enough to successfully

10
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implement a XOR architecture and as can be seen the neuron is only capable
of learning to fire on one instance of A.

The next step up in complexity is the two layer perceptron. As can be seen,
this network is capable of implementing a XOR operation because the system
is capable of remembering more than just one hyperplane: it can model a
convex open or closed region.

Finally we have the multi-layer perceptron (MLP) (more than two layers —
three layer example given in this case). They differ from a normal perceptron
in that they have hidden layers - so called because their output is not actually
observable. Each layer that is added enables an extra, distinct, non-linear
classification line. This allows a decision line of almost any shape to be
created. It can be easily seen that this network can implement the XOR
problem, if perhaps a bit to specifically. MLPs, unlike single layer
perceptrons, are capable of modelling training sets that are not linearly
separable. This is their major advantage over normal perceptrons.

An perceptron network has two modes of operation: Recall and Learning
mode. Learning mode [2] trains the network to simulate appropriate data by
altering each nodes’ input weights until the system is modelled to within
predefined limits: i.e. a target set. Recall mode simply puts values in and the
perceptron will attempt to classify it.

Perceptron networks exhibit many advantages over normal methods:

e A perceptron can be set up to learn through experience from the input data
itself.

e They can be applied to a classification, noise reduction or prediction
problems.

e They can make a conclusion even if the input data is not well defined.
e Patterns can be extracted even though differences are very subtle.

¢ Decisions can be made even if the data is chaotic by normal mathematical
standards.

For further information please see [26], [27], [28], [29] and [30].

4.6 Learning Vector Quantisation

Learning vector quantisation (LVQ) is a type of supervised training that
teaches a competitive layer to automatically classify input vectors.
Unfortunately, automatic classification means that vectors that are close
together will probably be put into the same class. There is no method in a
competitive layer to specify whether input vectors are of the same class or
not. This is where an LVQ network comes in to play as it allows specification
of the target vectors. Please see [31] for more information.

When applying the Kohonen rule ([28] and [29]) the competitive neuron whose
weight forms the closest match wins and outputs a 1. However, in an LVQ
network a target vector is found using the linear layer weights W2. This
means that the Kohonen rule is used only to update the weights if the neuron

11
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target is that target. If the winning neuron is found to be of the target class,
then the Kohonen rule is still applied but with a sign change. This moves the
offending neuron away from the vector. This results in competitive neurons
moving towards vectors of their own class and then competing with each other
to form sub-classes.

Figure 7 shows an example of an LVQ network:

Input Competitive Layer Linear Layer
~ ~N ~N ™~
Z nl(l) c al(l)  W2(1,1)=1
o= 2(1) 2(1)
n a
Yy ey e
) Z n1(2)| c al(2)
w2(1,2)=1
103 13 w2(2,3)=1
Z n ()I c al(3) 23)
r)
- - Z n2(2) a2(2)
Wi,2) : .
Z nl(x) c al(y)
- ARG =) S« _J
Figure 7

Sample Learning Vector Quantisation neural network.

4.7 Conclusion

The amount of theory in the field of neurocomputing is immense. This chapter
gave an overview of the basics of the field, followed by a brief description of
some common networks, but even so only scratched the surface. Section 4.3
mentions other interesting networks but does not describe them. For further
reading on these (and other) neural networks please consult [24], [26], [28]
and [29].

Even though large scale neural computers do not yet exist, the possible
applications remain diverse from pattern recognition in both spatial and time
domains to the implementation of digital logic with a degree of fault tolerance.

12
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5 Smart Pixels

5.1 The Interconnection Problem

In 1971, Stone developed a sorting algorithm for parallel systems which has,
to this day, not been surpassed as far as a minimal rate of growth of

computational steps is concerned.

Perfect Shuffle Interconnect
—> B |

A A ﬂ
4 . .
—> —> |
) B B . - | | i L
—> —> | ] I |
—> ¢ ‘ —— = ] | l L
— —> = m =
) D D . - P R L.
— > — [ ] ——]
— : - —> | ] | L
—> —> | |
N F F - A I L
—> . . — i
_— = :l..
—> " " >
— > > — C |

(a) (b)
Figure 8

This network is capable of performing a perfect shuffle on 16 elements. Each node in (a) is lettered A to H and is interconnected as
shown to two successor nodes. Part (b) shows this network implemented using a 2 metal layout process.

The algorithm is based on work done by Batcher in 1968 called the bitonic

merge-sort, Stone adapting Batcher’s work for a
shuffle exchange network ([6], [7] and [23]). The
interconnection methodology is generally known
as “Stone’s perfect shuffle” and can be seen in
figure 8.

The major disadvantage is that to implement this
system in any scale the amount of
interconnection layout becomes prohibitive. It is
this very interconnection problem that limits
implementations of highly interconnected

The Physics of Photonics
Electrons Photons
Coulomb No Interaction
Interaction

Figure 9

Photons have the advantage of being non-interacting
in free space.

13
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concurrent systems such as neural networks: however, this is where optical
interconnection comes into play.

In a confined area, electronic connections need to be placed with sufficient
spacing so that there is no electronic crosstalk due to capacitance. This leads
to physical size limitations in any silicon processor. However, light has the
property that it is non-interacting in free space and therefore the interconnects
can effectively cross each other (figure 9 and [21]). Since the interconnects
can then be more direct, the amount of routing is reduced and skew becomes
less of a problem. Figure 10 shows a perfect shuffle network using an optical
interconnection strategy. Here the data from each of the input nodes is
converted into an optical information stream (e.g. modulated onto a laser
beam) and routed through a Computer Generated Hologram (CGH). The
CGH is computer controlled and can deflect each input beam to a pre-
programmed target. The beams are then refocused down onto a detector
array which converts the information back into electronic signals for the output
nodes. It can be easily seen that this solution is also two dimensional: i.e. a
2D array of emitter and detector elements can be used.

There are various combinations of - g
components that can be used in such | Qptoelectronic Interconnection

a system [22]. For example: Lens
Input Output

Active Output Devices (require no Nodes Nodes
external light source): (4 A
e Vertical Cavity Surface Emitting | — " -

Laser (VCSEL) [8] and [9]. — N
Passive Output Devices (require :::_ :::
external light source): e e
e Electro-Optic Modulator (EOM) | —{ ] N

[10], [11], [12] and [13]. —1 | -
o Self Electro-optic Effect Device : e e ::

(SEED) [10] and [14]. . W
Optical interconnection elements are | F e
mainly dominated by: — . | Z‘:’
e Computer Generated Holograms | __.—

(CGH) which are also knownasa | " j::

Diffractive Optic Elements (DOE)
[15], [16], [17] and [18]. CGH

Receiver elements are usually some
form of:

Figure 10

° PhOtOdiOde [1 0] E:?frgglzhzfﬁ%p;i:gb;ifnmunications channels interconnecting to create a
e Self Electro-optic Effect Device (SEED) [10] and [19].

Unfortunately there are a few problems with constructing a practical
detector/modulator system: although it is possible to implement a detector on
silicon, it is not possible to implement a modulator (insufficient bandgap
energy difference in silicon [20]). The choice of modulator is therefore very

14
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relevant since it not only greatly influences the fabrication process but also
what the system can be used for thereafter. Table 2 summarises the
properties of four common output interfaces.

Inter-Chip

Technology = On-Chip Drive Power Connectivity Fan-out
Modulators Inefficient Good Poor
VCSELs High power consumption = Moderate Excellent
LEDs Inefficient Incompatible with Very Poor
holograms
ucavity LEDs Good Use fibre bundles Poor
Table 2
Taken from reference number [21].
Unfortunately each technology has a drawback Flip Chip Bonding

which makes it undesirable in certain situations.
This problem resulted in the development of
hybrid technologies which employ a Si detector
and GaAs modulator arrays, flip-chip bonded
(references [21] and [37]) on top of one another
(see figure 11) after each has been separately
fabricated. This combination of input,
processing and output elements is generally
known as a smatrt pixel.

Solder bump

Solder wettable pad

Substrate >« N

~”" Interconnection tracks

Figure 11
= Example of flip-chip bonding as used to create hybrid
5-2 smart Plxels smart pixels.

Smart pixel refers to picture elements in a display or photodetector array that
may have some or all of the following attributes:

e Memory.

¢ Intra-pixel processing.

e Inter-pixel communication.

e Optical input from photodetectors or SEED elements.
e Optical output in the form of modulators or emitters.

Smart pixel arrays (SPAs) ([3] and [4]) have evolved from passively
addressed spatial light modulators (SLMs) and displays. SLMs and displays
with simple pixels suffer from low frame and refresh rates. This results in
image degradation, ghosting, low resolution and limited pixel functionality. By
incorporating active circuitry into each element (e.g. VCSEL emitters), smart
pixel arrays overcome many of the problems associated with their
predecessors.

Any implementation of a smart pixel VLSI technology must carefully consider
the following six points [42]:

15
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1. Conversion efficiency. Electro-optical, opto-electric and optical coupling

efficiencies must be high.

N

High speed operation.

Any figure in excess of 100Mhz is generally

considered to be high speed.

w

High device reliability.

o

High yield fabrication processes.

Able to handle complex logic functions.

6. Allow for logic with a low power=xdelay product.

There are currently two
types of  fabrication
process for smart pixels:
hybrid (figure 12) and
monolithic (figure 13).

Hybrid approaches use
two different fabricates
which are then combined
using one of three
techniques: flip-chip
bonding ([37], [38], [39]
and figure 11), wafer
bonding [40] or epitaxial
lift-off [41].

The monolithic approach
uses a single custom
grown wafer of Ill to IV
materials ([32], [33], [34]
and [35]) or an optical
material re-grown on a
processed wafer [36].

The next section
examines a few promising
implementations
examining their individual
advantages and
disadvantages.

p - AlGaAs

Figure 12

Cross section of a hybrid GaAs SEED/Si-CMOS smart pixel implementation

Optical Inputv

Cross section of a monolithic FET-SEED smart pixel implementation.

5.3 Smart Pixel Implementations

5.3.1

Photo-Thyristor

Photo-thyristor smart pixels are fabricated using a p-n-p-n doped structure
and are so-called because their opto-electronic components exhibit thyristor
like non-linearity. They are constructed by stacking a phototransistor on top of
an optical output element such as LED or VCSEL and basically perform an
optical dynamic memory operation. Unfortunately this device requires a reset
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pulse (several nanoseconds) to turn off the output element which results in
poor operating speeds.

Three examples are Double Heterostructure Optoelectronic Switches (DOES)
[43], Light Amplifying Optical Switches (LAOS) [44] and Vertical to Surface
Transmission Electro-Photonic (VSTEP) [45] technology. Table 3 shows the
respective properties of the devices.

T

= > X

S 2 E £ s o

£ £55 £53 83 3» 3 = § &,

Technology °o 3 58 2585 88 85§ 3 g Ss 93

£ g:¢ PEE FE 8= 5 0§ 83 g8

= 2. om @ O h T forl o = = zo

S XS] o © g T3 g S c o

) (o} o o L g

=
DOES (LED) M High Low Low No No Low No High
VSTEP (LED) M High Low Low No No Low No High
LAOS (LED) M High Low Low No No Low No High
DOES (VCSEL) M High High High No No Low No High
VSTEP (VCSEL) M High High High No No Low No High

Table 3

5.3.2 Heterojunction Photo-Transistor — Vertical Cavity
Surface Emitting Laser (HPT-VCSEL)

The HPT-VCSEL [46] is an evolution of the photo-thyristor (See 5.3.1). This

implementation incorporates a heterojunction phototransistor (HPT) to the

side of a vertical cavity surface emitting laser thus reducing optical feedback
(i.e. no photo-thyristor effect).

This type system is however plagued by a need to dissipate excessive
amounts of power. Table 4 shows the respective properties of this device.

e
= (=2 o = © x
2 £ = = © 2 >
£ £ 5S> 2 5S> 2> A =) P = =
5 %52 8%e 32 o=—_ S c fo =338
Technology o % 88 688 3 s o 5L e S o) 2 3
£ St BeE gE $8= 5 0§ 84 8¢
S &Sow gZow sw  fg 2 5 2 =
c <3 o (< © ©
E(:. (@] o T8 T
HPT-VCSEL M  High High High No No Low No High
Table 4

5.3.3 Heterojunction Phototransistor-Modulator (HPT-MOD)

The HPT-MOD integrates heterojunction phototransistors with multiple
quantum well (MQW) reflection modulators. One example implementation is
the exciton absorption reflection switch (EARS) [47] which consists of a HPT
and modulator which are vertically stacked and connected electrically in
series. This arrangement allows the reflectivity of the modulator to be
controlled by the optical intensity applied to the HPT.

17
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This architecture has a few problems: firstly, heat extraction. Since both sides
of the chip are used, it is not possible to attach an efficient heat sink.
Secondly, EARS does not allow an electrical contact to be made to the base
of the transistor which prevents the implementation of complex logic. Finally,
the system suffers from Miller capacitance of the HPT. This imposes a
relatively low modulation limit on the technology. Table 5 shows the
characteristics of this device.

e
‘= o > oS x
2 c S = = °@
> O e L c = -2 = 2 [ >
s §sC 3ef B 3. (&8 T (B. g
o 7 o QcN ° = (a]
Technology e | §¢ o582 8¢ @52 o k) oD t'§
£ SE5E BEE TE HB= 5 8 o4 £
= 2 Sw 2 Sw 2w To g = =] )
c (o] w -4 o ° g = o
S
EC> o o o rs T
HPT-MOD . . .
(EARS) M High High High No No Low No High
Table 5

5.3.4 GaAs-FET/LED
This technology has been demonstrated in two different implementations.

The first used a GaAs complimentary heterostructure FET (CHFET) where
vertically emitting LEDs and ion-implanted photoconducting detectors were
monolithically combined [48]. The system was limited to a maximum clock
speed of 10MHz due to limited mobility of holes and high leakage currents in a
p-type GaAs material.

The second integrated LEDs with n-channel MESFETs and p-n photodiodes
[49]. The system had a severely limited switching speed (800kHz) due to the
fact that large photodetectors were required to couple light from the LEDs of
the previous stage.

Table 6 gives the characteristics of both of these devices.

T
= o - > S x
g £ S = ] 2 >
£ £ 5> 2 5> o > w a8 i~ g- ©
S 5@8 % 8 32 == = c 6 o 23
Technology o g8 553 3 g w§d e S °op £3
£ 2Z& TE& T[& S8 s 0§ 83 g¢
S &ow gZow sw  fg 2 5 2 =
= <3 o e © ©
E(:. (o] o w T
MESFET/p-n/LED M High Low Low No No Low Yes High
Table 6

5.3.5 MSM/FET/VCSEL

This is a recently developed technology which monolithically integrates
VCSELs with metal-semiconductor-metal (MSM) photodetectors [50]. This
implementation has been demonstrated working at above 100MHz, however
further improvements are still required on FET transconductance and VCSEL
wall-plug efficiency.
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Table 7 overleaf shows the advantages and disadvantages of these devices.

T
2 c = ° i
> (3] 3] — =3 = 2 >
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Table 7

5.3.6 Self-Electro-Optic Effect Device (SEED) Technologies

A self-electro-optic Effect Device (SEED) [51] is simply a MQW diode
connected in series with another element and a voltage source, providing an
optically bistable circuit. The MQW diode can function as either a detector or
modulator.

There are five different types of SEED technologies:

R-SEED: Second element is a resistor.

D-SEED: Second element is a photodiode.

S-SEED: Second element is another SEED forming a Symmetric SEED.
M-SEED: Multi-state SEEDs have additional SEEDs connected in series.
L-SEED: Logic SEEDs are a series/parallel combination of SEED elements.

Many demonstrations of SEED implementations have been made including an
optical logic processor, a cellular-logic image processor and switching
systems for telecommunications.

The big advantages of SEEDs are high production yields and device reliability.
Unfortunately they are also hindered by relatively high switching energies and
a lack of true VLS| complex logic.

Table 8 shows the respective properties of the devices.
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Table 8
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5.3.7 GaAs FET/MQW Modulators

There are three of GaAs FET/MQW modulators, each of which is briefly
discussed here.

To overcome the limitations of EARS, a technology was developed which
uses metal-semiconductor-metal (MSM) photodetectors, MESFETs and MQW
modulators [52]. An MSM photodetector as receiver instead of MQW diode
allowed the system to use either positive or negative input logic.
Unfortunately, low quantum efficiency is a trait of MSM detectors (~50%) and
results in a reduced system responsivity.

A monolithic optoelectronic transistor (MOET) [53] is a combination of MQW
modulators/detectors with MESFETs and resonant tunnelling diodes (RTD)
(designed to be load elements for the photodiode). The problem with this
technology is that the large photodiode used dominates the input capacitance
limiting switching speeds to ~1ps.

Finally we have the field-effect transistor - self electro-optic effect device
(FET-SEED): a technology derived from the S-SEED to improve switching
speed and device functionality. The FET-SEED fabricate combines doped
channel FETs with GaAs/AlGaAs MQW diodes. In this implementation the
MQW diodes serve a dual purpose dependant upon applied bias voltage: they
can either function as a high quantum efficiency photodiode or as an electro-
optic modulator.

Table 9 shows the respective properties of these three devices:
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Table 9

5.3.8 Hybrid Flip-Chip Bonded InP-MQW-Modulator/Si-CMOS

Hybrid systems are the alternative to monolithic technologies where two
different substrata are bonded on top of one another using a controlled
volume of solder sandwiched between two wettable pads: one on each chip
(see [38] and figure 11).

In this implementation one chip is silicon CMOS logic circuitry and the other
an InP  MQW modulator (inverted asymmetric Fabry-Perot) or p-i-n
photodetectors. The MQW modulator is operated at 1.55um since the
substrate is transparent at this wavelength, allowing optical access once the
chip has been flipped over.
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The major problem with this technology is the flip-chip bonding. To connect
both substrata they must be placed on top of one another and heated to
reflow the solder bumps (which are normally 30um in diameter) thus creating
a connection. Such high temperatures can be detrimental to the chips and
create a strained connection when attached due to thermal expansion
coefficient mismatch. Note that a high chip yield has been demonstrated if
larger solder bumps are used (>40um in diameter).

Table 10 shows the relevant device characteristics.
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5.3.9 Hybrid Flip-Chip Bonded GaAs SEED/Si-CMOS

This hybrid approach addresses the limitations of monolithic FET-SEED
technology (section 5.3.7) by flip-chip solder bump bonding GaAs MQW
diodes to VLSI Si-CMOS. The GaAs substrate is removed by chemical
etching to leave MQW diode islands behind (see figure 12 and [39]). Thermal
expansion problems are avoided by simply using cold solder tacking with
epoxy or low temperature thermal compression bonding.

Table 11 summarises implementation characteristics.
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5.4 Smart Pixel Research

Many manufacturers produce smart pixel technologies. This section simply
lists, in the form of table 12 overleaf, a few interesting implementations which
are broken down into Input, Logic and Output elements.
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Researcher
AT &T

NTT, Opticomp
Zurich

AT&T

Heriot Watt
Georgia Tech

Erlangen,

Siemens, Colorado

Edinburgh,
Colorado

UC San Diego

Input

GaAs SEED

MSM GaAs

GaAs
GaAs
InGaAs
ELO

InGaAsP
Si PIN
Si

Si

5.5 Conclusion

Logic
GaAs FET

HEMT-MESFET
GaAs-MESFET
Si-CMOS
Si-CMOS
Si-CMOS

Si-CMOS

CMOS

MOS

Output

GaAs-SEED
Modulator

GaAs VCSEL
GaAs LED
GaAs Modulator
InGaAsP Modulator
ELO InGaAsP LED

GaAs VCSEL

Liquid Crystal
Modulator

PLZT Modulator
Table 12

It is apparent from the information in this section that the GaAs MQW diode on
Si CMOS hybrid technology is the only implementation to meet all the criterion
for an efficient system. Using Si CMOS VLSI logic is a great advantage since
it is a technology which is not only very mature but scalable and flexible.

Comparing monolithic to hybrid technologies, it can be seen that monolithic
systems cannot compete against new hybrid technologies. These new
technologies are more efficient and better developed in almost every aspect.
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6 Optoelectronic Networks

6.1 Introduction

The main advantage of implementing an optoelectronic neural network is that
interconnectivity is no longer a problem in complex systems: a problem that
makes it impracticable to implement pure silicon neural systems. This section
examines how smart pixels can taken advantage of to build such systems.

6.2 Fan-In and Fan-Out

Fan-in and fan-out are both major problems to implement in silicon but are a
crucial part of neural networks.

Firstly let us consider fan-in
by looking at figure 14.
Referring back to the instar
network in 4.4.3, we see that
this network involves j inputs
being collected by a single
neuron in a parallel array of i
networks. If we take the
output from each neuron in
P, we can see that the input
to P; is a linear summation of
all j outputs respectively.
Each pixel element need
only then be programmed to
respond as though it were a neuron.

Fan-in example using a cylindrical lens OE.

Fan-out, as shown in figure 15,
is used in structures such as the
outstar network in 4.4.1. We
see that this network involves a
single input from i parallel
networks in P; being distributed
to j multiple target neurons in P;.
The diffractive optic element
(DOE) is used here to split the
signal evenly among the targets
but this results in the signal
power being divided amongst
the target pixel elements which
obviously results in an increased Figure 15
nOISG |eve| |n the System ] Fan-out example using a diffractive optic element (DOE).

However, as long as the noise
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[54] remains within manageable limits the robust nature of neural networks
should easily be able to compensate for this problem.

Please refer to [22] for further information on fan-in and fan-out.

6.3 Optoelectronic Neural Network

The combination of fan-in and fan-out in an optical neural network allows large
networks to be implemented. Please examine figure 16.

weighted modulator outputs
imaged on to detector array

fan-in lens

fan-out hologram

electrical

outputs
modulator array i
It e, multiple copies of the
bearVI\-SpI ing | modulator outputs
hologram o [ imaged on to the
~~.j] weight mask
electrical inputs
DFB laser
Figure 16

Example of an optoelectronic neural network employing both fan-in and fan-out. Please see text for more details. Diagram taken from [1].

This system takes input straight from a distributed feedback (DFB) laser which
it splits and distributes evenly to the modulator array. Fan-out is then
performed by a hologram to create multiple images of the modulator array on
a weight mask. This mask applies an appropriate weight modification on the
input signal before it continues on. Another lens is then used to fan-in the
weighted information onto the correct detector on the detector array.

6.4 Applications of Optoelectronic Neural Networks

Optoelectronic neural networks can be applied to any situation where a neural
network could be applied. Some good examples of such are:

e Telecommunications Switching.
e Smart Control Systems

e Image Processing.

e Character Recognition.

e Speech Processing.
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As long as the problem has a lot of inherent concurrency then the system is
suited to finding a solution. These systems are not suited to any problems
which are sequential in nature: the next instruction needing a result from the
previous.

For further information on optoelectronic neural networks, please consult [1],
[22], [55] and [56]

6.5 Conclusion

Optics has a major advantage over electronics when implementing highly
interconnected systems because of the inherent properties of light. It can be
clearly seen that the promise in such systems and their application to neural
network implementation is great. There is unfortunately one problem lurking
in the background: noise. This is the very problem which limits the degree of
fan-out because each signal that the input is divided into gives its own
contribution to overall system noise. Too much noise and the system
becomes useless.
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7 Conclusion

This report has carefully looked at the technologies and theories involved in
creating a smart pixel optical neural network. It highlighted the reasons
behind an optical implementation but has not yet addressed one issue: what is
the demand for such a system?

Optoelectronic neural networks will remain simply a curiosity rather than a
useful system unless industrial uses can be found for them. There are
however some very promising applications for the systems:
telecommunications switching and control tasks. The sheer parallelism of
optoelectronic neural networks makes them highly suited to these applications
and, given continued development, smart pixel optoelectronic neural networks
may one day be as common as the microprocessor.
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8 Glossary

ANN
EOM
CGH
CHFET
CMOS
DOE
DOES
DFB
D-SEED
EARS
ELO
EOM
FET

FET-SEED

HEMT
HPT
HPT-MOD

HPT-VCSEL

LAOS
LED
L-SEED
LvQ
MESFET
MFLOPS
MLP
MOD
MOET
MQW
M-SEED
MSM

NN

OE
OEIC
R-SEED
RTD
SEED
SPA
SLM
S-SEED
VCSEL
VLSI
VSTEP
XOR

Artificial Neural Network

Electro-Optic Modulator

Computer Generated Hologram
Complimentary Heterostructure Field Effect Transistor
Complimentary Metal Oxide Semiconductor
Diffractive Optic Element

Double Heterostructure Optoelectronic Switch
Distributed Feed Back

Photodiode Self Electro-optic Effect Device
Exciton Absorption Reflection Switch
Epitaxial Lift-Off

Electro Optic Modulator

Field Effect Transistor

Field Effect Transistor Self Electro-optic Effect Device
High Electron Mobility Transistor
Heterojunction Photo-Transistor

HPT — Modulator

Heterojunction Photo-Transistor — Vertical Cavity Surface
Emitting Laser

Light Amplifying Optical Switch

Light Emitting Diode

Logic Self Electro-optic Effect Device
Learning Vector Quantisation

Metal Semiconductor Field Effect Transistor
Million Floating Operations Per Second
Multi-Layer Perceptron

Modulator

Monolithic Opto-Electronic Transistor

Multiple Quantum Well

Multi-state Self Electro-optic Effect Device
Metal-Semiconductor-Metal

Neural Network

Optical Element

Opto-Electronic Interconnects

Resistive Self Electro-optic Effect Device
Resonant Tunnelling Diode

Self Electro-optic Effect Device

Smart Pixel Array

Spatial Light Modulator

Symmetric Self Electro-optic Effect Device
Vertical Cavity Surface Emitting Laser

Very Large Scale Integration

Vertical to Surface Transmission Electro-Photonic
Exclusive Or
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