K. J. Symington and J. F. Snowdon

1 Solving the Assignment Problem
Using Neural Networks

Current software systems suffer from an exponential increase in
computational complexity when solving a quadratic assignment problem. This
document considers the problem and proceeds to propose a solution using
the inherent parallelism of a neural network to reduce computation times. A
specific example is given, in this case a crossbar switch, onto which problem
mapping is demonstrated and a solution given.

1.1 The Assignment Problem

As the complexity of modern communications and computational systems
increases so does the need to develop new techniques which deal with
common assignment problems ([4] and [5]) in situations such as:

e Network and service management.

e Distributed computer systems.

o Work Management systems.

e General scheduling, control or resource allocation problems.

The common assignment problem is essentially optimising task allocation to
all available resources thus maximising throughput. In a distributed computer
system this results in a many process computation being finished in the
shortest possible time whereas, in a network management system, packets
are routed to optimise throughput and minimise blocking.

This document examines specifically the assignment problem in a crossbar
switch for packet routing [9]. These switches are present in many
telecommunication systems and computer networks, one good example being
ATM (Asynchronous Transfer Mode) networks.

1.2 Neural Network Implementation

The problem of packet routing in crossbar switches is known to be analogous
to the travelling salesman problem (TSP). The TSP problem is a renowned
NP complete problem [14] which means that although it can be solved by
linear programming techniques, such as the Murnkes algorithm [15], it is
computationally intensive and complexity grows exponentially as its order
increases. Thus, a simple single processor solution will not provide
satisfactory scalability.

One alternative is to apply a neural network to the TSP problem [6], [7]. The
advantage of a neural net lies in the speed obtained through its inherent
parallel operation, especially when dealing with large problems. Such an




implementation will easily outperform any other method at higher orders of
network size ([1], [2], [3], [4], [8], [12] and [13]) providing a very good, but not
optimal, solution. It has been shown [4] that, at lower orders of network size,
the average solution is within 3% of optimal. However, as the network size
grows this figure improves slowly and begins to approach the optimal solution.

The problem which remains with any neural network solution is its adaptation
to act as a controller for a crossbar switch.

1.3 Crossbar Switches and Notation

A crossbar switch can be simply abstracted as a set of n inputs and n outputs
where each input can be switched to any output.

An example of this can be seen (a) nxn Crossbar Switch (b) Crosspoint Switch
in figure 1 where, by simply

closing the correct crosspoint L <,|
switch, any input line may be

n Input Lines

connected to any output line.
This system has the limitation

(c) Schematic Representation

K. J. Symington and J. F. Snowdon

that it is mutually exclusive: any n 3 E n
. . . Input_] nxn [|= Output
input or output lines that are in Lines—] = Lines
I—'—I

use cannot be reused. Thus,  Output Lines
two incoming requests for the ;

: : : Figure 1
same output line will result in

An NxN crossbar switch is shown here at various levels of detail.

one beCOm I ng blOCked (a) Shows an overall connection diagram for a typical crossbar switch.
rega rd IeSS Of the rout|ng (b) Details how each of the crosspoint switches work.
algorlth m Wh|Ch |S Used . (c) Depicts a high level schematic of a crossbar switch.

TO Clarify the nOtation Used Matrix Representation of a Crossbar Switch
throughout the rest of the _
document, please examine L oolmne_n
figure 2. This diagram details | — 1T T tfdg 0 T070%

how a matrix may be mapped . 1L foo100 0

onto the crossbar switch, each [input — 000100
crosspoint having a [""™ ——4+T1T17 0 0 0f|rows:
corresponding matrix element. A+ (00 0 0 o
A specific element in any matrix A 0000 0__

y can therefore be referenced | | | |7 0000 00y
using y;;, where i is the input line it i

and j the output line. Every Figure 2
element in the matrix can take This diagram shows how a matrix can be mapped onto the crossbar switch thus
on one of two values: 1 when "

there is a connection (or

connection request) or 0 otherwise. The value and legality of the matrix is
dependent on situation. Please examine the matrices shown in equations 1
and 2 overleaf.

These matrices represent the crossbar switch in figure 2 but from different
points of view. Equation 1 represents a set of desired connections where
three input lines have requested connection to two different output lines: one




K. J. Symington and J. F. Snowdon

001000 001000
000100 0007100
000100 000000
"o o000 o0 "o o000 o0
00000 0 00000 0
0000 0 0 0000 0 0

Equation 1 Equation 2

This matrix shows a set of requested connections. Input i=1 has This matrix shows a solution or response to the request in equation

1. ltis legal because there are no other connections on the input

requested a connection with output /=3 and both inputs ;=2 and i=3 i
Y rows and output columns which have been selected.

have requested a connection to output j=4.

request is obviously going to have to wait. Such a matrix is legal regardless of
the combination of zeroes and ones. Equation 2 shows a sample response.
One request has been discarded in favour of another since only one input line
can be connected to one output line at a time. A response is considered to be
legal if there are no other closed switches on the same lines, i.e. all other
elements in the same row and column as the active element must be zero.

The real optimisation problem 1 r 1
comes in when you start to
consider a system which has
buffered input In such systems
there can be multiple packets
waiting on a single input line for
various output lines, as can be

—t e e e e

seen in equation 3. Requests for

0
1
1
1
1
1

0
0
1
1
1
1

e e e = R e B )

— = O O O O

— O O O O O

S O O O O

S O O o = O

S O O = O O

S O = O O O

S — O O O O

— O O O O O

multiple connections can be seen
in the left matrix and the only
optimal solution which maximises
throughput on the right. This
request matrix proves useful for testing crossbar control systems.

Equation 3

The left matrix shows a request and the right the only optimal response. This
matrix is useful for testing a system.

As an enhancement to packet systems, each element could be converted to
an integer value representing the number of packets waiting on each
connection.

Neural Processing Element (Neuron)
1.4 The Neural Network Vil
\ W, c.t; (Bias)
The key to utilising the parallelism of a Vi W,
. . ~J
neural network is matching the w,
network as closely as possible to the Y
problem. For more information please "
refer to references [10], [16], [17], A
[18], [19] or [20]. i g
Inputs Syn_aptlc
1.4.1 The Neuron or Node weights

A neural network consists of a large Figure 3

number of processing elements called

The building block of any neural network: the neuron.




neurons (see figure 3 or references [11] and [20]) which are highly
interconnected to each other in a specific fashion. Neurons are the basic
building blocks of neural networks and are an approximation of the neuron
found in nature. A neuron takes inputs from other neurons’ outputs y;
(referenced by ij) and multiplies their strengths by a scalar weight w;; known
as the synaptic weight.

All'inputs are summed by the neuron along with a specific bias to find x;. The
neuron’s output y; can then be determined using a monotonic activation
function f{x;), as shown in equation 4. Here g is used to control the gain of
the sigmoid function, a higher value resulting in a steeper transition, and o,,;,
and 0,,, determine the minimum and maximum output values for y;
respectively.

Omax ~ Omin
1+e ™
The exact form of f(x;) is not particularly important and in fact any appropriate
non-linear monotonically increasing function could be used. The preferred

embodiment is, however, the sigmoid function.

Yy = f(x,-j)= Opmin T Equation 4

1.4.2 The Updating Rule

Adapting a neural network to any problem requires that an updating rule is
defined and thereby the network interconnection structure. The updating rule
determines the next value that a neuron will take with respect to time based
upon the previous outputs of other neurons, as shown in equation 5:

dx,, n n
=y = X, = D WV = D Wby ey Equation 5
dt k#j k#i
where:

x;. is @ summation of all inputs to the neuron referenced by ij including the
bias.

i;. determines whether a neuron referenced by ij is allowed to evolve: it can
take a value of either 0 or 1.

A;;: time constant for neuron referenced by ij.
w;;: synaptic weight for neuron input ij.

;- output from neuron referenced by ij.

c.t;;: Neuron specific threshold or bias.

and x; is related to y;; using equation 4.

To illustrate this rule further, figure 4 overleaf shows an interconnection
diagram for the modified system. Here the neuron marked with output y;; has
inputs from all the other neurons in the same row -w,;.y,; and column - w;,.y;.
The important point to note here is that the neural network works in an
inhibitory fashion so any active input will inhibit y;;. c.z; describes the external
bias supplied to each neuron which is not inhibitory.

K. J. Symington and J. F. Snowdon




K. J. Symington and J. F. Snowdon

The idea behind this
interconnection strategy ,

. . Columns: j

is that any active neuron 1 >
will try and turn all the
others off, eventually
resulting in only one of
the requests remaining
active in each row and
column. However, to
demonstrate its ability to
find an optimal solution,
the example in figure 4
needs to be extended
slightly, as in equation 6.
The left matrix here ”
represents a request
and the right its best
case solution with y,,
switched off.  Careful

consideration leads us to conclude that - - -
the network must converge to the
solution shown here since both y,, and
vy, are inhibiting y,,, thus resulting in it
being switched off before the others
and essentially losing. If y,, had won in
this case then it would have resulted in L 4L
a poor solution since y,, and y,, would
be off: obviously not maximising
potential throughput.

Neural Network Interconnection

Neuron

Rows: i

Figure 4

S O O O O
S = O = O
S O O O O
S O o = O
S O O O O
U

oS O O O O
S = O O O

S O O O

S O = O

0 0
Equation

The left matrix is a request and the right its solution.

0
0
0
0
0
6

It has been shown by Hopfield that with symmetric connections and a
monotonically increasing activation function f(x), the dynamical system
described by the neural network possesses a Lyapunov (energy) function
which continually decreases with time. The existence of such a function
guarantees that the system converges towards equilibrium which is often
referred to as a ‘point attractor’.

1.4.3 Local Minima

In any system with a continually reducing energy function, there is always a
risk that the system will become trapped in a local minima. In this system, a
local minima can be represented as a solution which satisfies the switching
constraints but is not a global optimal solution. The best way round this
problem is to introduce noise into the system by varying f. This alteration in
the activation curve’s gradient is significant enough to provide successful
convergence to a global minimum during network simulation.




K. J. Symington and J. F. Snowdon

1.5 Conclusions

Simulation of the system has proven not only that the system works but that it
is highly scaleable and has underlined two important points:

e Noise plays a very significant role in this model. As the noise level
increases, the time taken for network stabilisation decreases. However,
when the noise value reaches unity the network becomes unstable and
does not provide a valid or steady solution.

e Network size plays an important role in convergence to a solution: the
larger it is, the longer it takes to converge.

What makes this system so interesting is its diversity: switching is only one of
its many applications. Essentially, this system could be used to solve any
quadratic assignment problem where time is of the essence. Its ability to
handle larger order problems without serious performance degradation
emphasises the contribution such systems could make to the field of
computing.




K. J. Symington and J. F. Snowdon

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Peter W. Protzel, Daniel L. Palumbo and Michael K. Arras,
“Performance and Fault-Tolerance of Neural Networks for
Optimisation”, |EEE Transactions on Neural Networks, volume 4,
number 4, July 1993.

C. Bousono-Calzén and M. R. W. Manning, “The Hopfield Neural
Network Applied to the Quadratic Assignment Problem”, BT Labs
paper, Martlesham Heath, Ipswich, IP5 7RE, publication date
unknown.

Joydeep Ghosh, Ajat Hukkoo and Anjun Varma, “Neural Networks for
Fast Arbitration and Switching Noise Reduction in Large Crossbars”,
IEEE Transactions on Circuits and Systems, volume 38, number 8,
August 1991.

M. R. W. Manning and M. Gell, “Evaluation of the Hopfield Neural
Network for Service Assignment”, BT Labs paper, Martlesham Heath,
Ipswich, IP5 7RE, publication date unknown.

W. J. Wolfe, J. M. MacMillan, G. Brady, R. Mathews, J. A. Rothman,
D. Mathis, M. D. Orosz, C. Anderson and G. Alaghband, “Inhibitory
Grids and the Assignment Problem”, IEEE Transactions on Neural
Networks, volume 4, number 2, March 1993.

J. J. Hopfield and D. W. Tank, “Neural’ Computation of Decisions in
Optimisation Problems”, Biological Cybernetics, volume 52, pages
141-152, 1985.

R. D. Brandt, Y. Wang, A. J. Laub and S. K. Mitra, “Alternative
Networks for Solving the Travelling Salesman Problem”, |EEE
International Conference on Neural Networks, 24th to 28th Feb. 1998,
San-Diego.

T. X. Brown, “Neural Networks for Switching”, IEEE Communications
Magazine, November 1989.

T. X. Brown, “Chapter3: Controlling Circuit Switching Networks”,
Extract from T. X. Brown’s Thesis from CalTech.

J. J. Hopfield, “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities”, Proc. Natl. Acad. Sci. USA,
volume 79, pages 2554-2558, April 1982.

J. J. Hopfield, “Neurons with Graded Response Have Collective
Computational Properties Like Those of Two-State Neurons”, Proc.
Natl. Acad. Sci. USA, volume 81, pages 3088-3092, May 1984.

A. Marrakchi and T. Troudet, “A Neural Net Arbitrator for Large
Crossbar Packet Switches”, Circuits and Systems Letters, IEEE
Transactions on Circuits and Systems, volume 36, number 7, July
1989.




K. J. Symington and J. F. Snowdon

[13] S. B. Aiyer, M. Niranjan and F. Fallside, “A Theoretical Investigation
into the Performance of the Hopfield Model”, IEEE Transactions on
Neural Networks, volume 1, number 2, June 1990.

[14] M. R. Garey and D. S. Johnson, “Computers and Intractability”, New
York, W. H. Freeman, 1979.

[15] J. Munkres, f“Algorithms for Assignment and Transportation
Problems”, J. Soc. Ind. Appl. Math., 5, 32-8, 1957.

[16] Robert L. Harvey, “Neural Network Principles”, Prentice Hall
International Editions, 1994.

[171 James A. Anderson, “An Introduction to Neural Nets”, IT Press, 1995.

[18] Simon Haykin, “Neural Networks”, Macmillan Publishing Company,
1994.

[19] Clifford Lau, “Neural Networks: Theoretical Foundations and
Analysis”, IEEE Press, 1991.

[20] J. Hertz, A. Krough and R. G. Palmer, “Introduction to the Theory of
Neural Computation”, Addison-Wesley, 1991.




	Solving the Assignment Problem Using Neural Networks
	The Assignment Problem
	Neural Network Implementation
	Crossbar Switches and Notation
	The Neural Network
	The Neuron or Node
	The Updating Rule
	Local Minima

	Conclusions

	Bibliography

