A Neural Network Scheduler for Packet Switches

R.P.Webb*, A.J.Waddie, K.J.Symington, M.R.Taghizadeh and J.F.Snowdon Heriot-Watt University, Edinburgh, EH14 4AS, Scotland

* BT Laboratories, Martlesham Heath, Ipswich, IP5 3RE, UK

The Resource Allocation Problem.

- Telecommunications routers require optimised throughput.
- Optimising throughput is a computationally non-trivial problem.
- Resource allocation problems map naturally to the high parallelism of neural networks.
- Interconnection between neurons is the limiting factor in the practical implementation of a neural switch controller.

The Hopfield Neural Network

Hopfield Network Controller for Crossbar Switch Hopfield network Request 00000 connections Required Inhibition Pattern Neurons 00000 Select 00000 packets Set crosspoints Inputs Incoming Crossbar packets switch **Buffers** Outputs

Optical Implementation of a Hopfield Neural Network

Electronic Hardware

Diffractive Optical Elements

Element for Crossbar Switch Controller

Order separation,
$$s = \frac{f\lambda}{T}$$

The Next Generation Hopfield Demonstrator.

- The current demonstrator is physically large, slow and intolerant to variations in operating parameters.
- A faster, more tolerant demonstrator based around programmable DSP chips is being designed at Heriot-Watt.
- The DSP chips combined with higher efficiency VCSELs driven by analogue ASICs will reduce the overall size of the demonstrator.
- DSP programmability allows neuron response to be varied and system behaviour altered, e.g. prioritisation.

Conclusions

- Hopfield neural networks are an efficient method of optimising the throughput through a switching fabric.
- Diffractive Optics provide the necessary non-local interconnect bandwidth to implement a usefully large network.
- The decision speed of an optically interconnected Hopfield network is primarily controlled by the RC constant of the electronics, the optoelectronic conversion times being negligible.
- The next generation Hopfield network demonstrator will use high-speed DSP chips to provide programmable neuron responses.

