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Abstract

A general purpose neural network demonstrator is presented along with its application specific
predecessor which employs a winner take all strategy to optimise decisions on the throughput of both
a crossbar and a banyan packet switching fabric. The problems of high interconnection density in
neural networks are solved by using free space optical interconnects which exploit diffractive optical
techniques to generate the required interconnection patterns. The design, construction and operation
of the general purpose network is discussed along with the fully operational experimental application
as a packet switch scheduler which could significantly outperform current state of the art schedulers.

1 Introduction

A neural network is intractable to build to any scalable extent in silicon because of the high degree of
connectivity required. The object of using optical interconnection is to supply very high connectivity
using a free space optical system [1] in which a set of emitters are connected through a diffractive
optic fan-out element to a set of detectors. The very architecture of this system also tackles the
problem of weight summation by executing it in an analogue manner. Optical interconnects, of an
appropriate intensity, converge onto a detector associated with each neuron, the output of which is
inherently proportional to the sum of all incident light. Thereafter, all that needs be performed in
electronics is calculation of the activation function. Our optical scheme enables the deployment of
neural network technology in a scaleable manner.

This paper will discuss the optical neural network demonstrator currently under construction and
conclude by giving a specific example of its complete and working predecessor.

2 A General Purpose Optoelectronic Neural Network Demonstrator

A neural network consists of a set of neurons, interconnected in an application specific manner,
which perform some transfer function on the summation of a set of incoming weights. This
demonstrator uses a fixed set of weights defined using a diffractive optic element (DOE) [2] to
perform interconnection and summation with a digital signal processor (DSP) calculating the transfer
function. The system currently under construction consists of 64 neurons in an 8x§8 array. A DSP
solution was adopted to provide flexibility.

2.1 The Electronic System

The electronic system can be considered to consist of five stages, each performing a specific task
(figure 1). At the optical input end there is the detection system which converts a current generated
by incident light into a voltage of magnitude specified by the amplification of the transimpedance
amplifier. The second stage is an analogue-to-digital converter (ADC) which converts the voltage
received from the first stage into digital information (normally 8 bits) and multiplexes 16 analogue
channels through two octal ADC chips. The third stage consists of a Texas Instruments DSP which
takes the digital information from the second stage and performs a transfer function on it based on
previous and requested values. There are four DSPs in this system each handling 16 neurons (or
channels) with each DSP under the control of a master DSP. The fourth stage consists of two octal
digital to analogue converters (DACs) which are fed the new activation levels from the third stage
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Figure 1: Electronic and optical system components in one diagram. There are 64
parallel electronic channels in the electronic system whereas only one optical system.

2.2 The Optical System

The optical components have been mounted on an optomechanically designed baseplate. This
packaging scheme facilitates focus adjustments and mechanical and thermal stability for the VCSELs
whose total power consumption is estimated to be 10W. The entire optomechanical package holds
all the optical components within a space of approximately 12cmx15cmx20cm.

The role of the DOE is to provide fixed and evenly weighted interconnection between the neurons in
the system. Increasing the size of the neural network requires an increase in DOE fan-out:
increasing DOE fan-out decreases the signal incident on a detector with a consequent decrease in the
signal to noise ratio. Achievable network size is therefore tightly bound to DOE fan-out.

The pattern of neurons inhibited by a given active neuron is shift invariant. That is, it remains the
same relative to the position of the active neuron. An electrical system would require a separate
wiring network for each output. The system has a high tolerance with respect to noise - indeed the
system requires noise in order to operate.

23 Extending the System

There are a number methods which can be used to extend system functionality. Firstly, as
summation is performed in the optical domain, it is not normally possible to add additional weight to
a single input before summation. This problem can be overcome by time-multiplexing all neurons
which output a similar weight and multiplying this weight by the appropriate value. Partial
summation is performed by the optical system but this also results in an extra addition and
multiplication instruction per neuron in electronics for every time slice used. Alternatively, one
other solution is to use a weighted DOE pattern, but this presumes that the weightings are already
known and will never change.



Secondly, by using either a spatial light modulator (SLM) or computer generated hologram (CGH),
both of which can be controlled by a DSP and reconfigured according to the problem, neural
interconnection can be altered as desired.

The final enhancement is that of multi-layer networks. This is actually very simple to implement by
using pipelining in the DSPs. Thus for a three layer network there would have to be three iterations
in the optical system. This method is feasible as long as neural interconnection between all the
layers is the same.

The key to utilising the parallelism of a neural network is matching the network topology to the
problem as closely as possible. The choice of DOE element and flexibility given by the
programmability of the DSPs allows us to achieve this for a number of interesting problems, e.g.
Travelling Salesman (and related optimisation), feature extraction and process control [3-5]. We
have mapped examples of these problems and validated the mappings using an accurate simulator of
the physical network. Experimental results will be used to verify the theoretical predictions made by
simulation.

3 Neural Network for Packet Switching

This section considers specifically the assignment problem in a crossbar switch for packet routing [6,
7]. These switches are present in many telecommunication systems and computer networks, one
good example being ATM (Asynchronous Transfer Mode) networks. The problem of packet routing
in crossbar switches is known to be analogous to the travelling salesman problem (TSP) [3, 8-11].
The TSP problem is a renowned NP complete problem which means that although it can be solved
by linear programming techniques, it is computationally intensive and its complexity grows
exponentially as its order increases. Thus, a simple single processor solution will not provide
satisfactory scalability.

One alternative is to apply a neural network to the TSP problem. The advantage of a neural net lies
in the speed obtained through its inherent parallel operation, especially when dealing with large
problems. Such an implementation will easily outperform any other method at higher orders of
network size, providing a very good, but not always optimal, solution. It has been shown that, at
lower orders of network size, the average solution is within 3% of optimal. However, as the network
size grows this figure improves slowly and begins to approach the optimal solution.

In this implementation we consider both a crossbar and a multistage self-routing switch fabric with
random access input queuing. A two-dimensional array of neurons represents all possible input to
output connections. In the case of a crossbar, the neurons correspond directly to the crosspoints of
the switch. The neuron outputs can vary continuously between the off and on levels. In order to
choose a set of connections, the neurons representing all the requested connections are enabled
simultaneously and set to the same intermediate level. Each has a bias input that tends to increase its
output, but also receives inhibitory inputs from those neurons which represent blocking connections.
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pairs, leaving a valid set of neurons in the on state and the remainder off. The network is thus
behaving as a winner take all (WTA) system with a particularly simple interconnect pattern — each
neuron sees only its row and column neighbours, each of which are connected to it by a fixed
inhibitory weight. Sample interconnect patterns are shown in figure 2.

In this implementation, each of the 48 neurons (6x8) has an input detector followed by a capacitor-
coupled inverting amplifier chain and a low-pass filter, and the output drives a VCSEL (figure 3).
Initially all the lasers are set to a fixed output level, slightly higher than the off level. This sets a
stable total power for the array and effectively biases the neurons towards the on state. When the
network is enabled, the lasers of all the requested neurons are connected to their amplifier outputs
and the others are set to the off level. Between the laser and detector arrays are a pair of lenses and a
DOE that divide the light from one neuron’s laser and focus it onto the inputs of the other neurons in
the same row and column, but not its own input. Due to inversion in the amplifier chain, light falling
on a detector inhibits the associated neuron, decreasing its output.

High Pass Low Pass Nonlinear
Pre-amp Filter Comparator Filter Select Amplifier
Detector VCSEL
(Optical % % ~ b— (Optical
input) output)
Request

Figure 3: The electrical system used in the test system is much simpler than that of the general purpose network.

3.1 Packet Switch Results

This system has been implemented and its 10000
performance measured as a scheduler for
both crossbar (figure 4) and self-routing
(figure 5) switch fabrics. The scheduler
never produced an invalid result. Most
times it found an optimal result except with
the requests TRIAL6 and TRIALS
(crossbar only, figure 4). With these it
usually routed one fewer packets. Thus the
switch  would have near maximum 2000
throughput and never block. No attempt

has been made to make this demonstration 0
system run fast but nevertheless it provided

a decision within 33us: a rate compatible Number of Neurons ON (Optimal is €)
with the latest router requirements.

Simulations of a 16x16 neural network Figure 4: Histogram of packets routed in the crossbar switch.
scheduler were undertaken in order to make performance comparisons with other scheduler designs.
The simulations were performed under uniform traffic conditions and the mean delay (measured in
packet periods) was plotted against the offered load (the probability of a packet arriving at each
input). Figure 6 summarises the results of this exercise. The uppermost curve shows the situation
when the inputs are simply buffered in a first in first out (FIFO) fashion. FIFO queues suffer from
the problem of head of line (HOL) blocking in that if the foremost packet in the queue (the next one
to go) is blocked by another request but this also blocks all the packets behind it in the queue even if
their destinations are not in contention. As might be expected, a scheduler based on FIFO buffering
suffers severe performance degradation under increasing load. The lowest curve represents the

| Trial 3

8000

6000

Tria] 4

Number of Runs (From 10,000)

0 1 2 3

IS

Trial 3
12 Trial 1

Tri



theoretical best that may be achieved.
This is described as output queuing
and is calculated assuming an ideal
switch fabric (impossible) where
packets have only to wait for a vacant
slot on the output line. The solid line
represents an algorithm called ISLIP4
[12] which can be implemented in
CMOS electronics for a high speed
switch of this size. The dotted line
shows the neural network scheduler
performance and its favourable
throughput at loads from 70%
upwards.
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Figure 5: Histogram of packets routed in the self-routing
switch.
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Figure 6: A comparison of the neural network controller against a state of the art scheduler, ISLIP4, clearly indicates
its advantage at high levels of offered load. The output queuing curve indicates a theoretical optimum value.

4 Conclusion

In this paper we have described the successful implementation of a neural network which exploits an
optical interconnect to perform a real task. Although in this implementation speed was not a goal,
impressive performance in terms of convergence and noise tolerance was observed implying that
scalability is good and therefore very large switch sizes could be scheduled with little cost in speed.
In addition to this it will be possible to push the speeds up still further by removing the
communication delays in the system with a smart pixel based implementation of the electronics
where each detector/VCSEL combination has its own processing element (PE). This work [13]
demonstrates the principles of this system using discrete components along with an application

where the system excels.
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