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Abstract—This paper examines a novel combination of archi-
tecture and algorithm for a packet switch controller that incor-
porates an experimentally implemented optically interconnected
neural network. The network performs scheduling decisions based
on incoming packet requests and priorities. We show how and why,
by means of simulation, the move from a continuous to a discrete al-
gorithm has improved both network performance and scalability.
The system’s limitations are examined and conclusions drawn as
to its maximum scalability and throughput based on today’s tech-
nologies.

Index Terms—Neural networks, optical diffraction, optimization
methods, packet switching.

I. INTRODUCTION

T HE IMPLEMENTATION of neural-network hardware in
a practical and scaleable manner remains an obstacle to its

deployment. Algorithmically, a neural network may prove to be
infinitely scaleable, but if component interconnection require-
ments and signal to noise ratios are incorporated into the design
not only can the hardware quickly become unfeasible to build,
but unforeseen results may become apparent in the network it-
self. This paper examines the mapping of a neural-network al-
gorithm onto optoelectronic hardware and describes how algo-
rithmic adaptation has resulted not only in hardware minimiza-
tion but also significantly improved network characteristics.

The neural network referred to here is designed to solve the
assignment problem. In this case the problem is to maximize
the use of available resources thus optimizing bandwidth utiliza-
tion in a packet switch. It is interesting in two respects. First, it
is unusual to use a neural network as packet switch controller.
Such tasks are generally tackled by custom built digital hard-
ware. Second, the network containsoptoelectronic components
which are used to provide the high degree of interconnectivity
required [1], [2]. This approach makes the neural network highly
scaleable.

It is important to note that applying this neural-network so-
lution to the scheduling problem [3]–[5] can (in terms of mean
packet delay) outperform digital schedulers [6] such as iSLIP
[7] at higher load levels. Although our current hardware is not
built for the high speed of an individual switch cycle, this is
purely due to our system being designed as a proof of principle.
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Fig. 1. Schematic of experimental neural-network crossbar switch controller.
Based on the connections requested by incoming packets, the neural network
chooses an optimal solution, sets the appropriate crosspoint switches, and then
selects the chosen packets for transmission.

Indeed, the simplicity of the system is such that extremely
high speed versions of the hardware are easily conceivable.
This fact, combined with the encouraging simulation results
presented herein on scalability, suggest that this system will
provide an excellent packet switch scheduler.

All simulations are based on experimental component param-
eters to assess the scale to which neural-network hardware could
be constructed given today’s optoelectronic component toler-
ances.

II. SWITCHING PROBLEM

Packet switches are very common in computer networks and
telecommunications systems such as asynchronous transfer
mode (ATM) networks. With the exponential increase in traffic
from sources such as the Internet, efficient packet switching is
becoming a very important issue.

The crossbar switch is a common type of packet switch and
can be seen in Fig. 1. In this switch every incoming packet is
buffered and its requested output line examined. To rout the
packet successfully it must be transmitted through the crossbar
switch to its destination by closing the correct crosspoint. This
operation is mutually exclusive in that any input or output lines
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Fig. 2. Neural-network interconnection pattern mapped to anN = 5 element
crossbar switch. Neurony receives inhibitory input from all other neurons in
the same row and column. Note thatm = n = N .

that are in use cannot be reused, so two simultaneous requests
for the same output line will result in one packet being blocked
regardless of the routing algorithm used.

The neural-network architecture discussed here [6], [8]–[11]
creates a near optimal solution by examining the requested
output lines of all buffered packets and selecting a set of packets
to be transmitted such that mean packet delay is minimized.
The neurons are arranged in a two-dimensional array where
each neuron corresponds directly to a crosspoint switch. If
a crosspoint connection is requested by an incoming packet,
the appropriate neuron is allowed to evolve. This neuron will
attempt to inhibit all other active neurons in the same row and
column, as shown in Fig. 2, thereby activating its associated
crosspoint switch.

We can, therefore, define the network’s updating rule

(1)

where is the summation of all inputs to the neuron referenced
by . Inhibitory inputs from other neurons are represented by

and multiplied by a fixed synaptic weight . , and
are two neuron optimization parameters and a bias, respectively.
Evolution of the network is controlled by both , which is a
time constant for the neuron, and, which determines whether
a connection has been requested and its priority. Alteration of
the latter parameter allows adaptation of the neural network
to cope with changing traffic patterns, thereby implementing
prioritization. The neuron’s final output is then determined
using a monotonic activation function whose na-
ture, be it continuous or discrete, will be discussed in this paper.

This neural network is derived from the Hopfield and Tank
model [12] but is in fact a winner take all (WTA) network. Given
that it solves a generalization of the assignment problem, algo-
rithms such as the traveling salesman problem (TSP), processor

load balancing, etc., can also be readily mapped. Indeed, the net-
work has already been adjusted and tested on a banyan switch
configuration with a high degree of success [6].

III. SYSTEM HARDWARE

This project has seen the construction of two demonstrators.
The first generation demonstrator was designed as a proof of
principle to show that a neural network could be successfully
constructed using optoelectronic components. The second gen-
eration demonstrator added programmability, and thereby flex-
ibility, enabling network adaptation to differing problems. This
created a generalized optoelectronic neural network capable of
solving the assignment problem whose potential scalability and
performance are simulated here.

All neural networks consist of a set of neurons, intercon-
nected in an application specific manner, which perform some
sort of transfer function on the summation of a set of input values
each multiplied by an appropriate weight. Our hardware divides
this functionality into two domains: one optical and one elec-
tronic (Fig. 3).

Interconnection and fixed weighting is performed optically
using a diffractive optic element (DOE) [13]–[16] while a dig-
ital signal processor (DSP) calculates the transfer function elec-
tronically.

A. Optical System

In the optical domain, each neuron has control of one optical
output channel in the form of a vertical cavity surface emitting
laser (VCSEL) and one optical input channel in the form of
a detector. Both output and input elements are arranged in a
two dimensional array with each element corresponding to
a crosspoint switch. Therefore, the optical interconnection
scheme must allow interaction with other neurons in the same
row and column. Fig. 4 shows how an output VCSEL signal is
split by the DOE and inhibits all neurons in the same row and
column by applying a signal to their detector inputs.

Note that there is no signal present on the central detector as
this would result in self-inhibition and prevent the neural net-
work from evolving. Therefore, the DOE stores the weight ma-
trix for the neural network. Adapting the DOE can change both
network interconnection and weighting, thus allowing different
algorithms to be tackled. The interconnection pattern formed by
the DOE is shift invariant. That is, no matter where the optical
beam is incident, an identically proportioned pattern will be cre-
ated relative to the position of this beam. Thus, the neurons must
have an identical interconnection pattern, thus requiring adapta-
tion of any neural-algorithm to the hardware. Such an approach
separates this system from optical matrix vector solutions [17]
by allowing two-dimensional arrays of optical emitters and de-
tectors, thereby reducing hardware size and improving optical
spatial bandwidth. An electrical implementation would require
a separate wiring network for each neural output leading to an
quadratic increase in routing complexity as network size in-
creases.

This optical system makes use of inherent optical properties
to aid convergence and perform input summation. Increasing
the amount of light incident on a detector gives a near linear
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Fig. 3. Outline of the system currently under construction showing both optical and electronic pathways. This version is capable of routing eight input lines to
eight output lines (N = 8, 64 channels in total).

Fig. 4. Interconnect pattern formed by a single input channel incident on
the DOE. All detectors and thereby associated neurons in the same row and
column receive an inhibitory signal from incident light: thus the missing zeroth
order—self inhibition would prevent network evolution.

increase in the detector’s output signal. This results in analog
summation of all beams that are incident on a single detector.
Quantization error during conversion into the electronic domain
leads to noise but neural networks tend to be tolerant to noise
in many applications—indeed this system requires noise to aid
convergence.

B. Electronic System

In the second-generation system, the electronics were mod-
ularized into five stages (Fig. 3). Stage 1, the optical input, is
a detection system which converts a current generated by light
incident on a photodiode into a voltage of magnitude specified
by the preset amplification level of a transimpedance amplifier.

The second stage is an analog-to-digital converter (ADC) which
converts the voltage received from the first stage into digital in-
formation (normally 8 bits) and multiplexes 64 analog channels
through eight octal ADC chips. The third stage consists of a
Texas Instruments DSP which takes the digital information from
the second stage and performs a transfer function based on pre-
vious and current neuron inputs. There are four DSPs in this
system each handling 16 neurons (or channels) with each DSP
under the control of a master controller (personal computer).
The fourth stage consists of eight octal digital-to-analog con-
verters (DACs) that are fed the new activation levels from the
third stage and convert this information into appropriate volt-
ages. The fifth and final stage turns a voltage into a drive cur-
rent for the VCSELs, thus returning the signal into the optical
domain. A single chip solution has been fabricated for stage five.

The use of off-the-shelf digital signal processors in what ap-
pears to be an analog loop has a number of advantages. First, in-
terfacing of DSPs with input buffers and packet switch control
logic is relatively easy. Second, analog component tolerances bi-
ased network convergence in the first generation demonstrator
preventing certain neurons from winning against others. This
equates to a “favoritism” of certain neurons, and thereby paths,
which is unacceptable in an actual packet switch scheduler. Fi-
nally, the ability to alter neuron characteristics allows network
functionality to be adjusted and new applications tackled with
minimal reconstruction of hardware.

IV. SIMULATION AND RESULTS

Even though our first generation demonstrator had proven
the viability of this system, detailed simulation was considered
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Fig. 5. Scalability of an 8-bit (analog like) driver which has a linear
increase in the average number of iterations required asN increases. Average
convergence times are indicated by the curve with error bars showing minimum
and maximum outliers.

necessary to establish scalability limitations, potential hardware
problems or possible optimizations in the design of the second
generation. Scalability is quantified in terms of switch size,.
If a crossbar switch is of size then it has eight input chan-
nels, eight output channels and neurons. Performance
is quantified in terms of iterations to convergence. Iterations
to convergence are the number of complete system iterations re-
quired for the neural network to converge to a steady state. If the
slowest component in the system performs its required operation
at 10 MHz, be it VCSEL, detector, ADC or neural electronics,
then 10 10 iterations can be performed per second, since the
system is pipelined. Of these iterations, perhaps 400 may be re-
quired for the neural network to converge.

The simulation included component characteristics for con-
version between analog (optical) and digital (electronic) do-
mains. All conversion accuracies are expressed as bit depths so,
for example, a value of two indicates discrete levels or
eight gives levels. is the bit depth of digital-to-
analog conversion and that of analog-to-digital conver-
sion. was determined to be the largest source of random
noise due to a quantization error of1/2 least significant bit
(LSB) which is larger than normal background noise. This has
been experimentally measured as true so long as .

A. Variation of Network Response With

During the initial design phase, a set of predicted component
values were specified to give good performance without com-
promising functionality. An 8-bit DAC was selected as this gave
reasonable, but not excessive, resolution. As expected, the av-
erage number of iterations required for convergencescaled
in a linear manner with respect to network sizeas in (2)

(2)

This is graphed in Fig. 5 as a line intersecting the average
convergence times for various network sizes.

Given current optical system component values, the upper
size limit proved to be a crossbar switch of (441 neu-
rons). These simulations were done under full network load con-
ditions with each point on the graph the average of 1000 net-
work runs. Degradation thereafter resulted in the neural network

Fig. 6. Examination of the scalability of a digitally driven VCSEL system
shows that convergence time is not greatly affected by network size. Average
convergence times are indicated by the curve with error bars showing minimum
and maximum outliers.

producing invalid switch configurations when optical compo-
nent signal to noise ratios were insufficient for the state of a
single neural input to be reliably determined. Under such cir-
cumstances, the network still converges, however its output is
not usable due to frequent errors.

Characterization of neural network response at various op-
tical output bit depths was carried out in an attempt to find a
relation between maximum scalability, convergence time and
offered load. It was found that reduction of the bit depth to

gave an unexpected and significant result: the neural
network converged faster and became more scalable. Such a bit
depth can be considered the same as applying a hard threshold
transfer function in the neuron [18] and will be referred to as
driving the optical output digitally. Simulation has shown that
digital driving of the neural network in this manner will allow
the construction of networks of up to (3969) neurons
using optical components with the same characteristics as be-
fore. This is graphed in Fig. 6 and shows that the average number
of iterations required, , increases marginally with network
size.

However, at the number of iterations increases dra-
matically, after which point the network begins to fail.

The reason the digital system converges faster is that instead
of gradually turning on, as the analog system does, the neurons
switch from nothing to fully on in one step thus adding impetus
to convergence [19]. Digital driving of the optical system also
removes the need for both DACs and analog VCSEL drivers.
It appears that a reduction in hardware confers increased scala-
bility and a rapid decision.

Simulation of both analog and digitally driven networks was
also performed under varying network load conditions. This was
started at zero (0% or no connection requests) and increased
until a load of one was generated (100% or a connection re-
quest for every crosspoint on the crossbar switch). Under full
load conditions the number of neurons on should be, however
suboptimal solutions do arise with neurons on. Fig. 7 de-
tails the results for the analog network and Fig. 8 those for the
digital.

In both graphs, the left axis indicates the number of itera-
tions to convergence and the right axis the average number
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Fig. 7. Performance of an 8-bit analog-like driver under varying load
conditions. Averages indicated by the curve with error bars showing minimum
and maximum outliers.

Fig. 8. Performance of a digitally driven network under varying load
conditions. Averages indicated by the curve with error bars showing minimum
and maximum outliers.

Fig. 9. Comparison of quality of solution between digital and analog systems.
Averages indicated by the curve.

of neurons in an “on” state all averaged over 1000 test runs. The
digital network copes particularly well as load increases with
the number of iterations required increasing slowly. It out-
performs the analog network in all ways as far as convergence
is concerned. However, speed of convergence and scalability
are traded off against quality of solution. Expanding the second
-axis in Figs. 7 and 8 to give Fig. 9 shows that, on average, sub-

optimal solutions were generated by the digital system a little

more often than by the analog one. Under high load conditions,
the analog system gives a solution that is below optimal (one less
active neuron/crosspoint) about 3% of the time whereas the dig-
ital system about 8%–10% of the time. This is because driving
digitally prompts a faster descent through the solution space by
leaving parts of it unexplored.

B. Variation of Network Response With

The amount of light incident at a neuron’s optical input stage
is converted into a voltage and then to a digital value with a bit
depth of An attempt was made to define the number of
bits required to successfully operate the system. This was done
by varying along with offered load and examining the
number of iterations required for convergence.

When using a lower resolution ADC (in this case
is was possible to produce valid results a little beyond what was
believed to be its resolution limit. This was discovered to be
dependent on initial system request values. If a system starts
off unbalanced then there is a distinct solution or descent gra-
dient such that noise is no longer the major contributing factor
driving convergence. Such systems are capable of converging
with ADCs that have less resolution than theoretically required.
The hypothesis is that any noise present can push them in one
direction only. Values of with did not pro-
duce valid results as the resolution was no longer high enough
to discern whether a neuron’s optical output was on or not.

Also observed was that when using an accurate, higher reso-
lution ADC (in this case only a few neurons were
active but the network did not produce a solution near optimal,
i.e., it was not converging correctly. This is because if the system
starts off balanced (full matrix) then noise is a very important
factor in stimulating convergence. As bit resolution increases,
LSB noise decreases and so the system fails to converge within
the maximum number of iterations (in this case 5000)—indeed
a complete lack of noise prevents the system from working at
all. This problem is solved by adding noise which resulted in
the system beginning to converge again.

Therefore, must be of sufficient resolution to clearly
determine the state of a single neuron’s optical output. However,
excessive resolution will suppress noise and slow convergence
critically. Results indicate that for an network,

is a good compromise.

C. Validity and Stability of Design

Simulation was undertaken to prove that the distribution of
solutions was of a normal nature given that the addition of noise
was linear. This would indicate the presence of an attractor to
which the network converged and therefore underline the rel-
evance of an average convergence time. Without such an at-
tractor, the neural network could be considered as unstable [20].
Each point on this graph (Fig. 10) represents the number of oc-
currences of iterations to convergence, and, therefore, one
complete simulation, within a certain window.

The normal curve can be seen to be positively skewed around
an average number of iterations (bold line). Varying of network
load consistently gave a normal distribution.
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Fig. 10. Positively skewed normal curve indicates the presence of an attractor. Multiple network iterations have an average convergence time as indicated by the
bold line.

D. Hardware

Although our results in this paper have been rigorously ex-
trapolated from experimental data, it should be noted that there
are restrictions oncurrent scalability due to features of com-
mercially available components. For example, VCSELs are only
readily available at at present (although and

exist in the laboratory frame) due to fabrication dif-
ficulties and power dissipation problems. Similarly, DOE tech-
nology probably limits us to due to noise considera-
tions—again primarily due to fabrication difficulties. Photode-
tector arrays are relatively simple to acquire and highly scalable.
There are obviously limits to the number of channels the elec-
tronics can handle, but this type of DSP solution was chosen
for flexibility. A dedicated application specific integrated cir-
cuit (ASIC) or field programmable gate array (FPGA) solution
would be necessary for a real application and is not envisaged
as a bottleneck at present. It is presumed that the latest genera-
tion of fabrication techniques, when applied to these optoelec-
tronic components, will lead to significant relaxation of the cur-
rent system bounds.

V. CONCLUSION

These results show how nonintuitive algorithmic adaptation
can bring hardware minimization, improved performance, and
better scalability to an otherwise cumbersome system. The
reason that digital thresholding converges faster is because
instead of a neuron gradually being switched on, as the analog
system does, the digital system switches from nothing to fully
on in one step. This adds impetus to convergence but unfor-
tunately also a hastiness that can lead to suboptimal results
more often than in the analog case. Nevertheless, the possible
hardware savings accrued by bypassing DACs and analog
VCSEL drivers for a more rapid decision lead, in themselves,
to performance enhancement.

Driving digitally, an network would produce a so-
lution every 400 iterations under maximum load. On the other
hand, an 8-bit analog like system could be scaled up to
but would have a decision time of1800 cycles at this level.
The advantages of a digitally driven system are clear, provided
that a suboptimal solution of neurons on can be tolerated
less than 10% of the time under higher load conditions. If we
were to implement such a system with a 1 GHz cycle time at

, a fully loaded neural network (with convergence in a
generous 400 iterations) could produce 2 500 000 million solu-
tions per second. This compares favorably with current packet
switch schedulers [6]. The impressive thing about such a system
is that although hardware cost increases, decision time remains
virtually constant as switch size increases. On the other hand,
existing algorithms such as iSLIP require an increasing number
of iterations as modeled by .

Given the ability to reconfigure the interconnect, this neural
network is capable of solving many variations on the assign-
ment problem. What has been demonstrated here is how careful
problem mapping to regular weight matrices and optimization
can lead to viable and scalable hardware implementations.
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