
Schloß Dagstuhl Seminar Report 00261

Dynamically Reconfigurable Architectures

June 25-30 2000

Gordon Brebner, Karl-Heinz Brenner, Hossam El Gindy and Hartmut Schmeck

1 Summary

The Dagstuhl Seminar on Dynamically Reconfigurable Architectures brought together 42
participants from 11 different countries. As with its predecessor seminar held in 1998, the
participants came from three distinct communities, concerned with:

• field programmable gate arrays for fast and flexible configurable computing, and the
associated design tools; and

• computational models of, and designing efficient algorithms for, processor arrays with
reconfigurable bus systems;

• optoelectronic systems for communication with very high bandwidth.

A main aim of the seminar was to encourage cross-fertilisation between these communities,
to work towards a new understanding of dynamically reconfigurable architectures and their
possibilities. Some of the specific questions addressed by the seminar were:

• What are shared characteristics of, and possible interfaces between, machine-based
computational models and circuit-based computational models?

• How will current ”ASIC replacement” device architectures evolve to be genuine ”com-
putational component” device architectures?

• What are appropriate system-level architectures for systems composed of processors,
configurable logic and memory, and how might these be implemented at chip level?

• What overall computational models are best to evaluate alternative system-level ar-
chitectures?

• Which aspects of current hardware and software design practice are, and are not,
relevant to the design of ”soft” circuitry and ”hard” programs?

• What are appropriate new design processes, and supporting tools, for systems com-
posed of a mixture of circuit and program, implemented in hard and soft manners?

1



• How general purpose can system design be? Is specialisation inevitable to achieve
best performance?

• How are reconfigurable systems best presented to algorithm designers?

• What are realistic aspirations for the practical benefits achievable from the use of
reconfigurable systems?

• How can optical communication be used best to support run-time reconfiguration?

There were 34 talks given by the participants, each shedding some light on one or more
of the above issues. A lively discussion session on the Wednesday evening provided an
opportunity to synthesise the differing viewpoints of the participants. Interestingly, one
topic that provoked much discussion was how to define the term ‘dynamically reconfigurable
architecture’, with differing positions emerging on how dynamic the reconfiguration should
be expected to be, and on what types of architecture might be included.

The seminar emphasised that technological advances have opened up new ways of im-
plementing complex systems, ways that blur the traditional barriers between hardware and
software components. Because of this, existing design tools do not seem to be adequate
for the necessary new design styles - in fact, at one extreme, it is possible to let hardware
evolve by itself, learning the required functions. There are many applications, ranging from
computing on spacecraft to the control of motors, that should be able to derive benefits
from enabling novel types of configurable computing systems.

A recurrent theme was whether the traditional Von Neumann model of computation
has now run out of steam, as sequential processors become just one type of component
in parallel and distributed systems. Irrespective of opinion on this, the need for robust
computational models for run-time reconfigurable systems and evolvable hardware was
highlighted, possibly following the general philosophy of the RMESH model for reconfig-
urable meshes. A thorough understanding of the computational possibilities is of great
importance in assessing the benefits of dynamic reconfiguration for real-life applications.

Based on such an understanding, it will then be possible to make progress on finding apt
high-level languages and notations for expressing computations based upon dynamically
reconfigurable architectures. While mature concepts from both hardware and software
engineering will influence this exercise, it seems that these must be augmented by natural
high-level ways of expressing features such as concurrency, topology and reconfiguration.

Bridges then have to be built between the high level descriptions of function and the
physical underlying architectures, which may be based on a variety of technologies, in-
cluding optoelectronics. Robust computational models will also enable the development of
apt virtual machines, that mask the particular technical details of specific reconfigurable
computing machines.

The seminar pointed the way to how progress might be made in these directions, and
new collaborations were initiated. The pleasant atmosphere of Schloß Dagstuhl was an
important incentive for the lively interaction between the participants. We thank all who
contributed to the success of the seminar. Furthermore, we gratefully acknowledge financial
support for the seminar from Xilinx Inc.

2



2 Abstracts of talks

2.1 Index

Speaker Page(s)

Marcus Bednara 10
Yosi Ben-Asher 13
Neil Bergmann 4
Gordon Brebner 7
Michael Dales 17
Damian Dalton 20
Oliver Diessel 18
Adam Donlin 17
Dietmar Fey 11
Reiner Hartenstein 7
Rainer Kress 8
Steffen Köhler 13
Manfred Kunde 10
Dominique Lavenier 16
Patrick Lysaght 19
Martin Middendorf 18
Viorel Onofrei 12
Tobias Oppold 6
Marco Platzner 14
Bernard Pottier 16
Frederic Raimbault 15
Sergej Sawitzki 13
Satnam Singh 17
Heiko Schröder 5
Mark Shand 9, 19
John Snowdon 11
Ondrej Sykora 21
Uwe Tangen 6
Simon Taylor 10
József Vásárhelyi 21
Klaus Waldschmidt 8
Thomas Worsch 14
Xin Yao 4

3



2.2 Monday

Evolvable Hardware
by Xin Yao

Evolvable hardware refers to hardware that can change its architecture and behaviour
dynamically and autonomously by interacting with its environment. It attempts to make
hardware softer while maintaining its speed advantage. Evolvable hardware means different
things to different people. Some people regard it as the application of evolutionary algo-
rithms to hardware design. However, this view does not capture the essence of evolvable
hardware. This talk gives a state-of-the-art overview of different approaches to evolvable
hardware. It argues strongly that there is an urgent need to study the theoretical founda-
tion of evolvable hardware while working on applications. Key issues, such as scalability,
generalisation, circuit verification and test, must be addressed in research before any real
breakthrough can be made in this area.

Reconfigurable Computers in Space:
Problems, Solutions and Future Directions
by Neil Bergmann (joint work with Anwar Dawood)

Interest in Reconfigurable Computing (RC) has recently spread to those interested in space
missions. Although RC has sparked much interest in the general computing community, it
has yet to demonstrate ‘killer app’ status for any terrestrial applications. We believe that
there are compelling arguments about why RC is an excellent match to the requirements
of space missions.

• After launch, unmanned spacecraft electronics are generally unavailable for physical
upgrade or repair. RC technology allows new hardware circuits to be uploaded via a
radio link.

• New circuit configurations can overcome design faults, allow improved processing
algorithms to be uploaded, or change system functionality in response to changing
mission requirements.

• The same circuitry can be used with different configurations at different stages of a
mission, reducing weight and power.

• If part of an FPGA fails, then circuitry can be reprogrammed to make use of remain-
ing functional portions of the chips.

• Use of FPGAs allows generic circuit boards to be designed, which are customised for
individual applications. This helps overcome the very high NRE costs.

• In-flight reconfiguration provides additional safety margins for missions with very
short lead-times, or for those where mission requirements are not fully defined at
launch.

4



There are however problematic aspects of operating FPGAs in space:

• Ionising radiation causes soft-errors in the static RAM cells used to hold program-
ming information. Longer-term ionising radiation causes hard-errors in the electronic
circuitry.

• Radio-links to spacecraft are often low bandwidth and high error-rate. This is not a
good match to the relatively large configuration files .

• Limited on-board memory restricts the number of different configurations that can
be stored.

Short-term solutions for configuration errors include readback and checking of the pro-
gramming bitstream, or use of triple-redundancy voting circuits. Short-term solutions
for configuration management include specialised compression techniques, and differential
configuration formats (relative to an on-board default configuration). Long-term solutions
require special ‘space-friendly’ FPGAs which provide on-chip configuration error-detection
and/or correction circuitry which operates continuously and unobtrusively. Techniques
will need to be developed to identify permanently faulty logic blocks within an FPGA.
Techniques are needed to allow existing circuit designs to be reconfigured on-board the
spacecraft to avoid faulty logic cells. This is impractical with current generation place-
and-route software.

There is much scope for research into error-detecting or fault-secure logic circuit designs
for FPGAs. A single chip or MCM combination of FPGA, microcontroller, flash memory
configuration store, and digital and analog I/O circuitry would greatly reduce space mission
weight and cost. We are building an experimental satellite payload to demonstrate the
reconfiguration of FPGAs in space. The payload consist of A small (1kg) payload consisting
of a microcontroller with RS422 communications, SRAM-based FPGA (Xilinx X4062),
RAM, PROM, Flash Memory storage and an Adaptive Instrument Port. The payload will
fly on the Australian experimental FedSat satellite, due for launch in late 2001.

In summary, we believe that Reconfigurable Computing has many advantages for space
applications, and is an excellent match to new directions in low-cost, flexible space missions.
Overall, there is potential for space-based computing to be a ‘killer app’ for reconfigurable
computing technology.

Fault Tolerant Computing On Board Satellites
by Heiko Schröder

The University NTU of Singapore plans to build a satellite for the purpose of earth obser-
vation. The satellite will fly at an altitude of 800 km and could collect up to 400 Gbit of
image data per orbit. But it can download only about 1/1000 of this data. Thus on-board
image processing is required, which up to now has not been attempted in mini-satellites.
A range of architectures are presented that can provide various degrees of fault tolerance
in order to cope with damage caused by radiation. These architectures range from well

5



established schemes like ‘shadow’ processors and ‘majority voting’ to toroidal architectures
with 4-neighbourhood and 6-neighbourhood.

Systems in which processors can time-share between several instruments as well as
systems with one processor per instrument with a range of spare processors catering for
processor loss are presented. Finally the various systems are compared in terms of their
atomic fault pattern sizes and in terms of their survival probability in the presence of a
given number of faulty processors. Overall, it is shown that traditional schemes to cope
with faults due to radiation can be outperformed easily if the processors are connected in
regular fault tolerant networks.

Self Organisation in the µ-configurable Hardware POLYP
by Uwe Tangen

DNA or RNA mediated self-replication involve highly refined enzymes or special environ-
mental conditions and procedures. In between the biochemical experimental setup with
its typical 1014 sequences of RNA, DNA plus enzymes, and evolving 103 to 105 computer
programs — such as Tierra with a length of several tens of instructions, a large gap is
apparent. The use of electronically evolvable hardware promises to be an intermediate
research platform.

This lecture reports on a model situated between the biological and the artificial sce-
nario using custom built hardware. POLYP is a second generation, massively parallel
reconfigurable computer based on micro-reconfigurable Field Programmable Gate Arrays
(Xilinx XC6264) with a large number of additional distributed memory circuits under lo-
cal control. It is shown that self-organisation of simple state-machines indeed is possible
with not only their descriptions evolving but concurrently working on these descriptions.
Self-replicators emerge and evolution over long timescales shows the feasibility of online-
electronic evolution.

Experiences with Reconfigurable Computing and Outlook on Further Work
by Tobias Oppold

Dynamically reconfigurable architectures are getting more and more important for the fu-
ture! For example, there will be a high demand for mobile applications in the upcoming
years and low power consumption is therefore an important issue in future chip design.
FPGAs already have this advantage over conventional microprocessors but in many cases
they are too expensive to be used in industrial production. Besides many other advantages,
dynamically reconfigurable architectures like NEC’s dynamically reconfigurable logic en-
gine (DRLE) combine an improved performance/power ratio compared to processors with
an improved area efficiency compared to FPGAs. The DRLE stores multiple configurations
on-chip and can be reconfigured within a few nanoseconds on a fine-grained basis. Since
the University of Tuebingen has much experience with high-level synthesis and mapping
of object oriented descriptions into reconfigurable architectures, we are highly encouraged
to investigate how our techniques can be applied to this new architecture.

6



The Third Way: Neither Hardware Nor Software
by Gordon Brebner

The words ‘hardware’ and ‘software’ have various connotations - of circuitry, architectures
and hardness in the first case, and of programs, architectures and softness in the second
case. Dynamically reconfigurable architectures do not fit into either category, so a ‘third
way’ is needed. The bigger picture is one where classical networked von Neumann archi-
tectures are running out of steam, in the face of new technological developments, such
as system-on-chip, configurable logic arrays and photonics. A future view of computing
systems is as networks of diverse programmable information handling components, from
the chip level upwards. Information may be digital, analogue, approximate, etc. and
components may be electronic, photonic, micromechanical etc. Communication is the key
concept.

Thus, the third way encompasses ways of expressing diverse programmability and di-
verse logical and physical connectivity, at apt levels of abstraction. Programmability in-
cludes both human-programmed control flow and data flow, and self-programming in adap-
tive systems, applying equally to computation and communication as these concepts merge.
Connectivity is concerned with the absolute and relative positions of the communicating
components — determined perhaps by external-world factors, the human programmer or
by automated process. Expression of parallelism and interaction is extremely important.

In devising the third way, one should resist existing abstractions that may be too
abstract and also inventing attempted complete solutions, but rather identify clear stepping
stones en route, each with solid formal underpinning. One must be prepared to invent new
information handling models for this.

Makimoto’s Law, the 2nd Design Crisis
and the Future of Reconfigurable Computing
by Reiner Hartenstein

Panelists currently discuss the 2nd VLSI design crisis: skyrocketing design cost and shrink-
ing product lifetime, mostly of hardwired accelerators. Two remedies are needed to cure
the 2nd design crisis:

• Reconfigurable accelerators for flexibility to reduce specialization and increase prod-
uct lifetime.

• A transition from net-list-driven synthesis to the application of real compilation tech-
niques instead of ‘synthesis’ and so-called hardware ‘compilers’.

However, the CAD industry is still mainly using methods of the Stone Age (Rubylith Age):
the first wave of Silicon Application (the first 20 years after market introduction of the
integrated circuit) due to the Makimoto/Tredennick wave model of silicon IC usage history.
The second (20 years) wave (the Bronze Age) brought the microprocessor, microcontroller
and memory to silicon IC application: the so-called von Neumann Machine Paradigm

7



serves as the enabler of efficient compilation techniques. But the ASIC hardware still uses
Stone Age CAD methods.

The third wave, the now beginning SoC age, brings FPGA usage into the mainstream.
Analysts and experts claim that reconfigurable core usage is an indispensable ingredient
of future SoC design methods. But we now still use stone age CAD methods, not only
for ASIC hardware, but also for (re)configuration of reconfigurable circuits. It is time to
come up with a (non-von Neumann) machine paradigm for reconfigurable machines, as an
enabler for real compilation techniques being much more efficient than net list pushing.
Compilation techniques to generate code for reconfigurable accelerator machines are a way
out of the current 2nd design crisis.

2.3 Tuesday

Microprocessors and Reconfiguration
by Klaus Waldschmidt

Microprocessor usage in PCs and workstations will fade away compared to the usage in
embedded systems as a system on a chip (SOC) solution. An embedded system has typ-
ically an analog/digital structure with the digital core of the microprocessor and some
mixed signal glue circuits. Selecting an approach for a microprocessor implementation in
embedded systems depends on the architect’s ability to correctly model the effects of new
technologies, new applications, new software (compilers) and CAD tools. Successful micro-
processor implementation depends mainly on bringing together the advances in technology,
knowledge of computer architecture and the potential of reconfiguration.

Starting with a short resume of the main technology trends and tradeoffs, a new struc-
ture model of today’s microprocessor architectures is presented. Architectures have been
classified in this model by a ‘class box’. By this class box, all architectural and implemen-
tation alternatives at the microarchitectural level can be explained. This model serves also
for an understanding of potential usage of reconfigurability within microprocessor design,
which can be done either at run, load or production time.

VLIW, Superscalar, Direct Issue or Dependent Based Superscalar, TTA and ADARC
are evaluated by this class box with respect to complexity and reconfigurability.

Configurable System-on-Chip
by Rainer Kress

The rapidly growing market for web-enabled consumer electronic devices introduces a
paradigm shift in embedded system design. Traditionally, embedded systems have been
designed to perform a fixed set of previously specified functions within a well-known op-
erating environment. After shipment, the functionality of the embedded system remains
unchanged during product lifetime. However, with shorter time-to-market windows and
increasing product functionality this design philosophy has exhibited its shortcomings. The
key features of next-generation embedded devices will be the capability to communicate

8



over networks and to adapt to different operating environments. There is an emerging
class of systems, which concurrently execute multiple applications, such as processing au-
dio streams, capturing video data and web browsing. These systems need to be adaptive to
changing operating conditions. For instance, in multimedia applications the video frame
rate has to be adjusted depending on network congestion. Likewise, for audio streams,
different compression techniques are applied depending on network load. Besides this class
of multi-function systems, there are multi-mode systems, i.e. systems which know several
alternative modes of operation, for example a mobile phone which is able to switch between
different communication protocols, or a transmitter which can toggle between different en-
cryption standards. This paradigm shift in functional and non-functional requirements of
embedded appliances not only holds for consumer devices. In industrial automation, there
is a growing demand for sensor and actuator devices which can be remotely controlled and
maintained via Internet.

In the following, we briefly highlight three examples of how Infineon copes with the
above mentioned requirements. A product, a design study, and a research project are
presented. The CARMEL Core is the first in a family of 16-bit, fixed-point digital signal
processing (DSP) cores that target advanced communications and consumer applications.
Its modular design architecture allows for complete system-on-a-chip (SoC) implementa-
tions using advanced Electronic Design Automation (EDA) methodologies in an integrated
development environment. The Configurable Long Instruction Word (CLIW) architecture
sets the core apart by allowing Very Long Instruction Word (VLIW) performance at the
low cost of traditional DSP architectures. The new CARMEL 20xx DSP allows system-
on-chip (SoC) designers to extend the functionality of the built-in execution units with
the addition of PowerPlug modules. This unique feature makes the Carmel DSP 20xx
architecture scalable and configurable at the SoC level.

In a design study, Infineon combined a fine-grained Flash-based FPGA with a 16-bit
controller on a single chip. Having the possibility to reconfigure the peripherals of the
controller also after product launch opens the market for hardware and software adaptable
systems.

JaCoP (Java driven codesign and prototyping environment) is targeted to suit as a
complete design environment for embedded systems including also dynamically reconfig-
urable hardware components. JaCoP is based on Java, which is used for specification and
initial profiling, as well as for the final implementation of system software. In the talk, we
gave an overview of the implemented codesign flow, and we presented a tool for managing
the interaction of hardware and software components.

Infrastructure of PCI Pamette
by Mark Shand

PCI Pamette is a modest sized reconfigurable PCI add-in board. It is designed primarily
to aid a conventional processor in I/O oriented tasks.

This talk describes the infrastructure of the PCI Pamette board, from its origins in
earlier reconfigurable work at Digital, notably DECPeRLe-1, to its possible future direc-

9



tions. Infrastructure covers compilation aids, board control circuitry, the board’s software
runtime library, and a number of utility programs. Wherever possible, the discussion will
be motivated by practical examples drawn from actual PCI Pamette applications.

Asynchronous Reconfigurable Computing
by Simon Taylor

As driving clocks becomes more difficult as the clock frequency increases, asynchronous
computing architectures provide a promising alternative to synchronous systems. The
speed-independence of asynchronous circuits allows greater exploitation of dynamic recon-
figuration.

This talk describes the necessary architectural features for implementing asynchronous
designs and highlights the problems with synchronous FPGAs which make them unsuitable
for this task. Two early asynchronous FPGAs are described before a more detailed descrip-
tion of STACC, a self-timed version of the Xilinx XC6200, is given. The talk concludes
with a summary of my current research.

Embedding Express Graphs into Networks
by Manfred Kunde (joint work with Heiko Schröder and Martin Fürer)

In an ATM network, an express graph is built on the top of the physical network in order
to make the network faster. An express edge (a, b) is built by connecting a physical path
from a to b in the original network to one edge in the modified network. By establishing
several express edges, an embedded express graph is generated. The aim is to construct
an express graph with a very small diameter.

We show that an arbitrary graph with N nodes and containing k directed Hamiltonian
cycles has an express graph with a diameter of O(kN1/k). The result can be extended to a
class of graphs having bigger subgraphs with k Hamiltonian cycles. Furthermore, for the
hypercube with N nodes, we give a new simpler construction for an express graph with
diameter O(log N/ log log N) which asymptotically matches the lower bound.

Hardware Generation from Partitioned Regular Algorithms
with Resource Constraints
by Marcus Bednara (joint work with Jürgen Teich)

A lot of research on regular algorithms and their mapping to VLSI hardware was con-
ducted in the 1980’s, but the high degree of specialization caused extraordinary costs for
real implementations. However, since reconfigurable logic devices became available, array
processors can be implemented in a more cost effective way.

Our goal is to automate the design path for generating FPGA hardware from regular
algorithms specified in a high level language. Several steps have to be performed: transfor-
mation into single assignment code, hardware resource specification (including hardware
constraints), composition of a mixed integer linear program (MILP) which provides solu-
tions for projection vectors and schedule vectors that are optimal, e.g. with respect to the

10



array latency and resource usage. In order to achieve an optimal timing as well as short
design cycles, the regular structure of the algorithm must be preserved when generating
hardware. This requires a proper specification of placement constraints, especially for the
FPGA target technology. Currently, we work on two back-ends for our design tool: one
for synthesizable structural VHDL and one for the JBits API to the Xilinx configuration
bitstream.

Optoelectronics in the reconfigurable environment
by John Snowdon (joint work with Keith Symington, and Ben Layet)

It is apparent that as the density of on-chip gates and ancilliary components increases
that a solution must be found to the inherent communication problem that such a density
creates. Optical communication has a number of advantages that can be exploited - free
space, fibre, WDM, surface normal and long distance (more than 2 cm) at low cost. Several
technologies exist to interconnect silicon through the optical domain, our preference being
VCSELs or MQW modulators being flip-chipped (solder bumped) onto the top surface of
the silicon. The bandwidth of such a system allows 10,000 channels at more than 10 Gb/s
to be realised. The latency of entering the optical domain (and re-entering silicon) is also
low at less than 5 ns. We have built several demonstrator experiments to illustrate these
capabilites and to drive the technology further. These include pipe-lined image processors,
dedicated sorters, telecom and datacom switches and neural networks. Our generic ‘optical
highways’ scheme can in principle provide raw bandwidths of more than 10 Pb/s; the
number being based on validated data extracted from our laboratory experiments.

The key to implementing the technology in a sensible way is the optical packaging.
Recent developments in ‘plug and play’ freespace systems and in fibre optic image guides
probably offer the best solutions. As feature size shrinks and inter (and intra) chip and
MCM connection costs accelerate, it may also be true that optics provides a cheaper, higher
performance alternative to any other interconnect technology.

Using Optoelectronic Interconnects for Run Time Reconfigurable Arrays
by Dietmar Fey

One of the major problems in current VLSI systems is limited bandwidth because of too
few and too slow off-chip interconnects. The imbalance between satisfying on-chip com-
puting power and insufficient off-chip communication performance has lead to a situation
which is generally described as intra- and inter-connect crisis in microelectronics. One of
the reasons for this crisis is that off-chip interconnects are located at the circuit’s edge.
A solution to this problem is offered by optoelectronic VLSI circuits. They exploit the
whole chip area for communication by using a 2-D optoelectronic interface to eliminate
pin limitation. Data rates of several 100 Gbit/s up to 1 Tbit/s are feasible in chip-to-chip
communication. This will satisfy future requirements in processor-memory and processor-
processor communication.

11



Massively optical interconnects for memory-processor communication are very attrac-
tive for reconfigurable architectures. We developed a test circuit consisting of an array
of optically loadable look-up tables. Each look-up table is provided with an optical input
pad. Using this 2-D optical input interface, all look-up-tables can be configured in the
nanosecond range simultaneously. Parallel optical interconnects between a configuration
memory and reconfigurable hardware circuits allows simple dynamic reconfiguration. This
allows separation of reconfigurable logic and memory. Configuration memory must not
be integrated within the reconfigurable hardware instead more area on chip is available
for integration of configurable logic units. Such an approach is very beneficial to increase
throughput and to speed up reconfiguration time in dynamic reconfigurable architectures
like MorphoSys or the RAW machine, or smart memory systems as well. Also, the optical
parallel interface can be exploited for rapid dynamically configuration of the intercon-
nects in chunky unit architectures. Summarizing, optoelectronic interconnects are a very
promising technology for run time reconfiguration in reconfigurable architectures.

eASIC, the Innovative Way to an Alternative to ASIC and FPGA
by Viorel Onofrei (concept by Zvi Or-Bach)

The only two available options up to now for a digital system designer are ASICs and
FPGAs. FPGAs are preferred for prototyping and low-volume production and ASICs for
high-volume production as imposed by the cost. eASIC is a concept developed by Zvi
Or-Bach, founder and president of eASIC Corporation, and its central idea is merging the
best of FPGAs (LUTs for ease of use) with the best of ASICs (high density achieved by
fixed interconnect).

The structure of the basic cell comprises combinational logic (two three-input LUTs
feeding a multiplexer) and a flip-flop. As a distinctive feature not to be found in other
ASICs, the eCell contains an independent inverter. The fixed interconnect is achieved
by customizing the top metal layers and provides density next to ASICs. The use of
LUTs offers the flexibility for incremental rectification and also the possibility of hidden
programmable interconnect. 256 eCells form an eUnit. In an eUnit, there is only a clock
domain and a unique scan-chain. The eUnit can be configured as a 256x16 bits RAM
block. 16 eUnits form an eASICore.

A comparison made with respect to density, performance, power, cost of design and
prototyping, turn around time and debugging indicates the intermediate position of eASIC
between FPGAs and ASICs. This comparison shows clearly that the eASIC is filling the
gap between FPGA and ASIC and appears as a viable alternative in the quickly changing
world of digital design.

12



2.4 Wednesday

Prototyping Environment for Reconfigurable Processors
by Sergej Sawitzki (joint work with Steffen Köhler and Rainer Spallek)

This work introduces a prototyping environment for reconfigurable microprocessors. First,
a short overview of known reconfigurable processors is given. A systematic approach (con-
cerning both the hardware and software parts) to designing, testing and debugging a recon-
figurable pocessor is discussed. The prototyping environment consisting of Altera’s UP1
board with memory daughter card and dedicated software (Motif GUI and extendable
communication protocol) is introduced. The CoMPARE processor is used as the first pro-
totyping example to test the static and dynamic reconfiguration approaches. Prototyping
results confirm the simulation data, attesting to performance gains of factors 2 to 28 for
different applications achieved through reconfiguration. The 8-bit prototype achieves clock
rates of about 10 MHz on an Altera FLEX10K20 FPGA and has a power consumption of
about 2 W. Further work concentrates on the development of the retargetable assembler
and compiler to automate the code generation and support variable instruction sets.

Evaluating DSP with Dynamic Reconfigurable Processing Units
by Steffen Köhler (joint work with Sergej Sawitzki and Rainer Spallek)

The processing of streaming data can be efficiently done by application specific digital
signal processors. In several application domains (e.g. audio and video processing), the
performance of these DSPs is not always acceptable, being only sufficient for a very limited
scale of special algorithm implementation. Another fact is the problem of low average uti-
lization possibilities of multiple DSP units in state-of-the-art VLIW or SIMD architectures,
which causes low functional execution density on silicon. Dynamically reconfigurable DSP
execution units provide a more flexible and efficient way for implementation of special pur-
pose application system designs. In this presentation, we discuss the integration of dynamic
reconfigurable structures and units in a standard SIMD/VLIW DSP environment. Design
elements are considered as hardware and software components. We further introduce a
retargetable compiler concept, which provides a flexible method for hypothetic DSP archi-
tecture component space exploration. To underline the advantage of reconfigurable DSP
comonents in practice, we show some implementation results for a minimal reconfigurable
processor. Finally, an outlook is given on the usability of new reconfigurable IC products
for prototype implementation of our considered reconfigurable DSP systems.

The P2NC Project - Or How Much Parallelism is There?
by Yosi Ben-Asher

In this work, we consider the problem of speeding up the execution of sequential programs
by means of parallelization. Good solutions to this problem are essential to the possibility of
keeping producing computers that are faster than those available today. Modern processors

13



rely on Instruction Level Parallelism (ILP) as a way to speedup the execution of sequential
programs. However, experimental studies suggest that ILP might be limited.

The P2NC is a novel tool which compiles sequential programs into boolean circuits
and then executes them in parallel using a probabilistic algorithm. It is based on the
observation that parallelism is best exposed when programs are compiled into circuits.
The goals of the P2NC project are:

• To produce upper bounds to the amount of parallelism that can be potentially ex-
tracted from actual programs using ILP techniques.

• Evaluate the potential to improve ILP involved with direct compilation of programs
to circuits.

• The probabilistic algorithm used by P2NC can lead to a new type of CPU which
is not based on the Von-Newman architecture. Moreover, fast evaluation times of
this algorithm may suggest ways to attack the well known circuit evaluation prob-
lem, namely, constructing a fast circuit that can evaluate polynomial circuits in a
logarithmic number of parallel steps.

An initial version of P2NC is currently being implemented and we already have some
preliminary results. The large size of the resulting circuits, and the long evaluation times,
requires that we use a powerful workstation for the experiments.

Reconfigurable Accelerators for Combinatorial Problems
by Marco Platzner

Many combinatorial problems show great amounts of data parallelism at the bit level,
which makes them natural candidates for implementation in fine-grained FPGAs. However,
combinatorial problems are often solved by control flow dominated search methods, such
as backtracking or branch and bound. Recently, a number of architectures have been
presented that implement these search algorithms in reconfigurable devices and exploit the
massive data parallelism by compilation to instance-specific hardware.

In this talk, I present different architectures to solve the Boolean satisfiability problem.
Simulation of these architectures shows that for examples from the DIMACS benchmark
suite, high raw speed-ups over state-of-the-art software can be achieved. I present a design
tool flow and prototype implementation of an instance-specific satisfiability solver and
discuss experimental results. The overall speed-up of the instance-specific architecture
was measured, taking the hardware compilation time into account. The results prove that
many of the DIMACS examples can be accelerated with current FPGA technology.

Cellular Automata with Dynamically Reconfigurable Buses
by Thomas Worsch

We consider one-dimensional cellular automata which are extended by dynamically recon-
figurable buses (RCA). This is a generalization of the bus automata model suggested by

14



Rothstein (1976). It is shown that up to a constant factor it does not matter whether bus
segments are directed or not, as far as the time complexity is concerned. For both vari-
ants of the model it can be characterized in terms of the reversal complexity of one-tape
one-head Turing machines.

The comparison of RCA with tree-shaped CA shows that the former are in the second
machine class (according to van Emde Boas’s taxonomy) and that they can be transformed
in some simple normal form with an only polynomial overhead of time. In this normal
form, adjacent cells are connected by only two bidirectional bus segments and during the
computations only linear buses are configured on which in each step at most one cell is
sending some information (‘exclusive write’).

2.5 Thursday

Why and How should we use FPGAs to run Mobile Code?
by Frederic Raimbault

Mobile code is a central concept of distributed systems. It has evolved from the client-
server paradigm (e.g. SQL transactions) to the code on demand paradigm (e.g. Applets).
The next paradigm becoming more and more used is the mobile agent paradigm, where
the code is moving autonomously from host to host. This programming paradigm offers an
interesting solution to the network overload: programs and computations are migrated to
where the data lies instead of moving the data. Several applications in electronic services,
information retrieval, telecommunications, groupware, etc. are already applying this pro-
gramming model. To be effective, a homogeneous runtime has to be provided on each host
receiving such mobile agents. The leading technology is Java; its Java Virtual Machine pro-
vides the needed platform independence. But it suffers from several drawbacks: software
complexity, greed for computing resources, low speed execution, unsecured access. The
worst one is its inability to evolve. The bytecode is fixed, bounded to the Java language
without any specialization possibility. It is as rigid as a hardware Java processor.

We propose to develop a concept of Dynamically Reconfigurable Virtual Machine
(DRVM) to address the adaptability problem and to implement it on FPGAs to improve
speed execution. The target system is composed of a PC connected to a FPGA board.
The PC is in charge of receiving the mobile code, (re)configuring the FPGA board and
launching the execution. The FPGA is in charge of executing the mobile code and has
access to a subset of host resources. The programming model is object oriented, classed
based, with static and strong typing. The execution model is entirely distributed. It is built
around object factories; each of those is responsible of creating, memorizing and applying
operations of one class of the program. Primitives classes are implemented statically by
predefined primitive factories that manage values. User classes are dynamically configured
by code instructions into user object factories. The outcome of this execution model is
that computation takes place where the object lies, so modularity, scalability and concur-
rency properties should be achieved. The key issue is the distributed control management
overhead.

15



We are actually simulating the functionality of this model and testing distributed con-
trol management. The next phase will be to implement our execution model into FPGA,
thanks to the Specialized Virtual Configurable Array concept of D Lavenier.

Specialized Virtual Configurable Arrays
by Dominique Lavenier

Today, the implementation of an application on a reconfigurable platform (accelerator)
suffers from two major limitations. First, implementations are not portable: a design
developed for one specific board cannot be directly re-mapped onto another board. Signifi-
cant changes always occur because of the different structures (architectures) of the boards,
the use of different technologies, the way the boards are interfaced, etc. Second, the imple-
mentation requires a long and a tedious conception time: traditional frameworks start from
a VHDL description and loop on the compilation/debug/synthesis/place-and-route steps.
These limitations are not compatible with the Reconfigurable Computing concept, which
advocates the speed of hardware together with the flexibility of software. The solution we
propose, to free us from these limitations, is based on the concept of virtual hardware for
portability and specialization of the architecture for programming efficiency.

Software Portability on Reconfigurable Chips
by Bernard Pottier (joint work with Loic Lagadec)

In the context of the increase of hardware resources, the development time could be the ma-
jor problem for the economic viability of integrated applications. Object Oriented method-
ologies and analysis allows reduction of complexity and cost due to reuse and modularity.
We are investigating their applicability to system and hardware design and synthesis.

First, a smart sensor system has been programmed 100the compiler producing the code
for the platform, which includes a CPU/FPGA and MAPP2200 (see http://www.ivp.se).
The camera is downloaded and controlled by a remote station that exchanges flattened
objects. Second, concerning the programmability of reconfigurable logic, it is proposed to
model directly architectures in OO environments in order to obtain portable system control
and basic software. A UML model or a small grammar could be enough to characterize
the architectures and have generic basic functions working.

We are also developing a medium grain model for computations that will allow a sys-
tem or a compiler to translate and allocate hardware resources. Translation of blocks to
reconfigurable parts involves mapping to the cell size (SIS package), then place and route.
Structural circuits are described by binding on variables and constructed by the drawing
support. We provides a few statistics and views of synthesized circuits. In conclusion,
we insist on the interest of the community investigating portability and the viability of a
standard for reconfigurable architecture descriptions.

16



Lava
by Satnam Singh (joint work with Mary Sheeran)

Lava is an experimental HDL which has several properties useful for designing dynamically
reconfigurable systems. Lava is embedded in the lazy functional programming language
Haskell.

One useful property of Lava is the ability to effectively lay out regular networks using
higher-order combinators. Usually for dynamic reconfiguration, one has to have a lot of
control over placement and Lava provides this ability without resorting to clumsy calcu-
lations of cartesian coordinates. Lava also provides support for specifying a very specific
kind of dynamic reconfiguration from a high level description. By using partial application
we are able to specify dynamic circuit specialisation. This can be thought of as run-time
constant propagation through hardware. A complex system which takes such high level
specifications and automatically produces hardware and run-time software for effecting
this partial evaluation has been built using an XC6200 based system. Experiments have
been performed on multipliers which have been specialised at run-time to yield constant
coefficient multipliers.

The FURI Runtime System
by Adam Donlin

In this talk, we introduce the concept and implementation of a runtime system for a self-
modifying processor architecture: the Flexible Ultimate RISC (FURI). The FURI core is
presented as an evolution of the simple, minimalist, transport-triggered style architecture
of the Ultimate RISC. The FURI processor supports a minimal instruction set architecture,
comprising a single word move instruction. Elements from the core of a standard RISC
processor are migrated onto the system bus of the FURI core. Computations may be
performed by orchestrating the flow of operands from memory, across the system bus, and
through the memory mapped registers of the system bus elements.

In mapping the configuration RAM of the host FPGA into the memory map of the
FURI core, we describe the creation of an autonomous, self-modifying processor. The
FURI core exploits this self-modifying capability to dynamically alter the contents of the
system bus and hence implement ‘virtual circuitry’. Building on this, we present details
of a flexible toolset for targeting and debugging code and circuitry for the FURI system.
From here, we then describe the implementation and challenges of developing an operating
system contained entirely within the FURI environment. Key features of this operating
system, such as its support for flexible protocols between the FURI core and the external
environment, are discussed.

Reconfigurable Functionality - The OS Perspective
by Michael Dales

In an attempt to bring FPL to the masses, there have been several attempts to introduce
FPL into a desktop machine, ranging from simply an FPGA on a PCI card, to placing

17



FPL inside the heart of a microprocessor. However, most of this work concentrates on
the issues at the bit level, spending little effort considering how this new resource will be
manage by the software which runs upon it.

An Operating System (OS) provides an application with an abstraction of the hardware
environment, but the hardware in turn needs to support this abstraction (e.g hardware
support for virtual memory). In this talk, I present some of the issues I see, as an operating
systems person, with the current attempts to integrate FPL into the desktop machine. This
will include an outline of the OS’s duties in managing a resource, then outlining some of the
problems that will need low-level aid, thus requiring support from the integrated hardware.
IT is likely that designers of integrated systems will need to provide this support if desktop
FPL implementations are to become prevalent.

Operating System Support for Dynamically Reconfigurable Architectures
(Run-time Partitioning for Just-in-time Compilation)
by Oliver Diessel (joint work with Grant Wigley and David Kearney)

The growing size of reconfigurable logic resources, the growing range and integration of
applications, and the increasing orientation towards real-time tasks suggests considering
the viability of multitasking reconfigurable systems. The question then arises: how to
manage/support large reconfigurable logic resources in a multitasking environment. We
believe the design of operating systems for multitasking reconfigurable systems will need
to decide whether the reconfigurable logic resource should be space- or time-shared. In
particular, should space-sharing be considered, it is necessary to decide whether to support
fixed or variable partitioning of the reconfigurable logic resource. While fixed partitioning
simplifies design and management, performance can suffer. On the other hand, variable
partitioning may support optimal task performance at the cost of scheduling complexity.
For example, to reduce the time tasks wait to enter the system, executing tasks might
be moved about, or waiting tasks might be adapted to the amount of resource available
at load time. However, this adaptation requires fast partitioning, placement and routing
algorithms in order to complete the physical design of tasks at load time. Our research
seeks to develop accurate and efficient indicators that can tell us whether to accept or reject
real-time reconfigurable computing tasks into common architectural models. The long-term
goal is to develop algorithms and techniques that allow us to complete the physical design
of tasks without contributing significantly to overheads.

Task Rearrangement on Partially Reconfigurable FPGAs
by Martin Middendorf
(joint work with Hossam El Gindy, Hartmut Schmeck and Bernd Schmidt)

Partially reconfigurable FPGAs can be shared among multiple independent tasks. When
partial reconfiguration is possible at run-time, the FPGA controller can decide on-line
where to place new tasks on the FPGA. Since on-line allocation suffers from fragmentation,
tasks can end up waiting despite there being sufficient, albeit non-contiguous resources

18



available to service them. Rearranging a subset of the tasks executing on the FPGA often
allows the next pending task to be processed sooner. In this paper, we study the problem of
placing and rearranging tasks that are supplied by input streams which have constant data
rates. When such tasks are rearranged, the arriving input data have to be buffered while
the execution is suspended. We describe and evaluate a genetic algorithm for identifying
and scheduling feasible rearrangements when moving tasks are reloaded from off-chip and
buffer size is limited.

The Von Neumann Bottleneck and Other Myths
by Mark Shand

The goal of this talk was to stimulate discussion by arguing that many premises held true
in the reconfigurable computing community regarding mainstream computer systems are
in fact myths. We further argued that conventional systems have more in common with
reconfigurable systems than is commonly granted, with the goal of this line of reasoning
being to refine our ideas of what constitutes a reconfigurable computer.

2.6 Friday

Dynamically Reconfigurable Logic and System on Chip
by Patrick Lysaght

This goal of this presentation was to identify opportunities for new research into dynami-
cally reconfigurable logic in the context of recent developments in deep sub-micron (DSM)
and system on chip (SoC) technologies for mask programmed ASICs. Dynamically recon-
figurable logic was introduced and an outline of the research into design methods and CAD
tools for dynamically reconfigurable logic, at the University of Strathclyde, was presented.
The Dynamic Circuit Switching (DCS) CAD framework for design capture, simulation,
controller synthesis, technology mapping and verification was reviewed. The options for
system on chip with FPGAs were considered and it was argued that dynamically reconfig-
urable logic remains relevant, even for the largest FPGAs.

The manner in which deep sub-micron (DSM) and system on chip (SoC) technologies
are transforming ASIC design methodologies and CAD tools was described. The changes
needed to address issues such as design productivity, timing and power closure, system
verification, and manufacturing test were identified. It was argued that similar method-
ology changes are also needed for the design of dynamically reconfigurable logic. Specific
instances of this trend include the need for closer coupling between logical and physical
design phases, greater exploitation of logical structure and hierarchy, and the use of block-
based design flows. It was concluded that DRL could benefit significantly from the catalytic
influence of DSM and SoC.

Finally, four new opportunities for research into FPGAs and dynamically reconfigurable
systems were identified. These included:

• New soft, parameterisable FPGA cores.

19



• Exploration of the concept of dynamically reconfigurable intellectual property cores.

• New FPGA architectures that incorporate communications networks for SoC.

• The use of reconfigurable FPGA cores in SoC ASICs as test access mechanisms
(TAMs) during manufacturing test and application logic during normal system op-
eration.

APPLES: An FPGA-based Application Specific Processor
by Damian Dalton

Parallel processing is only effective, as manifested in solving a problem more rapidly com-
pared to a single sequential processor solution, if the parallel architecture and the parallel
algorithm coincide with the intrinsic parallel nature of the problem. Many parallel pro-
cessors have accelerated the solution time for numerous problems. However, the quest to
reduce even further the computation time and find parallel solutions to those that have
been elusive to such approaches remains.

Unfortunately, often parallel algorithms are extracted from sequential solutions with-
out necessarily exploring options within the parallel domain. Frequently, the sequential
solution is unsuitable for parallelisation and the target architecture inappropriate. New ar-
chitectures and algorithms generated from adopting a new processing paradigm can present
innovative and faster solutions. Logic Simulation is one such problem and the new design
paradigm can be evaluated and implemented in Reconfigurable technology (Xilinx Virtex).
In logic simulation, logic gates are characterised by their switching behaviour, which can
be simple or quite complex in nature. The intrinsic problem involves mass computation of
basic Boolean operations requiring fine grain processors. Typically, relatively large coarse
grain processors are incorporated into the solution, reducing the amount of possible paral-
lel processing and increasing overheads and the associated interprocessor communication.
This severely impedes the speedup of these systems, limiting it to a value in many cases
below a factor of ten.

APPLES (Associative Parallel Processor for Logic Event-driven Simulation) is a novel
an alternative solution for Logic Simulation. Effectively, the architecture consists of a
one-to-one correspondence between processors and logic gates by utilising an associative
memory structure for holding signal values. Furthermore, gate processing is executed
in memory in parallel. Speedup of the system is substantially higher than coarse grain
processors, gates are evaluated within a few machine cycles and additional accelerated
enhancements are possible.

This processor is only possible through the reconfigurability aspects of Field Pro-
grammable Gate Arrays (FPGAs) allowing prototypes to be implemented and explored.
Even as a platform for final realisation, the FPGA-based parallel processor exceeds in speed
the performance offered by large grain ASIC processors. This supports the view that FP-
GAs have the capability to be more than just the ”Glue logic” of the digital environment,
permitting viable and competitive application specific processors to be investigated and
implemented.

20



Run-time Reconfiguration of AC Drive Controllers
by Vásárhelyi József

There are different approaches to defining reconfigurable systems, e.g. ‘Reconfigurable
Computing technology is the ability to modify a computer system’s hardware architecture
in real time’. Field Programmable Gate Arrays (FPGAs) are widely used in digital signal
processing. In some applications, they perform better than DSPs. Also, there are known
dedicated DSP processors for digital motor control. Comparing the number of applica-
tions known in the reconfigurable field, just a few of them are concentrated in the study
of vector control for AC drives. Some successful implementations of vector control are
referred to in the corresponding literature. A DSP implementation of speed-sensor-less
induction motor drive using artificial intelligence is presented by Vas. Unfortunately, all
these implementations, and especially their hardware structures, do not correspond to the
reconfigurable system paradigm. The implementation of an efficient vector control algo-
rithm for a single AC machine in a DSP processor is no longer a problem. Difficulties
arise when one tries to extend this implementation to multiple-machine control or the need
appears for implementation of a reconfigurable controller for the same machine. A solu-
tion for the multiple-controller implementation is presented in this paper, using Triscend’s
Configurable System on a Chip.

The necessity of reconfiguration is based upon the practical observation that the per-
formance of different types of vector controlled drives are different, depending primarily
on the range of speed. It is known that the rotor flux oriented vector control is more
easily implemented and therefore more widely used. One drawback of this method is the
low efficiency at low ranges of speed. For lower speed range, the stator flux oriented vec-
tor control is preferred. The control system presents modularity. This modularity allows
exploitation of all the parallelism of the control algorithm. The method was introduced
as Synchronous Vector Control. The introduction of the reconfigurable controller concept
solves the problem. In fact, the same hardware support that implements one controller
structure can be used not only to implement, but also to switch to another control scheme.
In this way, the disadvantage of using adaptive control can be avoided.

Each control structure can be seen as a distinct state of a state machine. In fact, each
state represents a different hardware configuration. Depending on the hardware support of
the implementation, the reconfiguration can be done as partial reconfiguration or total re-
configuration. The controller states are quantified. Reconfiguration has to be done between
two sampling events. Reconfiguration time has to be less than or equal to the sampling
period of the controller. It may became critical and there is the need for reconfigurable
structures with faster reconfiguration time.

Solution of Heiko’s Problem or Cyclic Cutwidths of Meshes
by Ondrej Sýkora (joint work with Heiko Schröder and Imrich Vrt’o)

The cutwidth problem is to find a linear layout of a network so that the maximal number
of cuts (cw) of a line separating consecutive vertices is minimized. A related and more

21



natural problem is the cyclic cutwidth (ccw), when a circular layout is considered. The
main question is to compare both measures cw and ccw for specific networks, whether
adding an edge to a path and forming a cycle reduces the cutwidth essentially. We prove
exact values for the cyclic cutwidths of the 2-dimensional ordinary and cylindrical meshes
Pm × Pn and Pm × Cn, respectively.

Especially, if m ≥ n + 3, then ccw(Pm × Pn) = cw(Pm × Pn) = n + 1 and if n is
even then ccw(Pn × Pn) = n � 1 and cw(Pn × Pn) = n + 1 and if m ≥ 2, n ≥ 3, then
ccw(Pm × Cn) = min{m + 1, n + 2}.

Motivation for the (cyclic) cutwidth problem comes from many areas of computer sci-
ence: rearrangeability, parallel and distributed computing, all-optical networks, etc.

22


