

Schloss Dagstuhl 2000 Seminar Report

Points from talks attended at Schloss Dagstuhl (June 26th to 30th, Germany).

Evolvable Hardware (EHW), Xin Yao

- EHW can be though of as:
 - The application of evolutionary computation techniques to circuit synthesis.
 - Hardware that is capable of on-line adaptation.
 - Hardware that changes architecture and behaviour depending on environment.
- Can be thought of as an optimisation algorithm for a hardware system.
- Direct Evolution
 - Evolvable algorithm to select and optimise component values in a circuit e.g. the value of a resistor.
- Indirect Evolution
 - Evolves an intermediate representation (e.g. trees) which specify hardware circuitry.
 - Structured Functional Description Language (SFL) circuits can be evolved e.g. 4 bit adder successfully evolved.
- Can evolve simultaneously:
 - 1. Circuit topology.
 - 2. Number of components.
 - 3. Component values.
- However, how do you represent as a chromosome? Create a circuit constructing primitive and network has variable size.
- Idea of this work is to show that evolution can be used to generate working circuits.
- Gate level approach runs into scaling problems.
- Advantages:
 - Explores a larger design space.

- Does not assume priori knowledge.
- Does not require exact specification can design complete systems.
- Constraints and special requirements can be imposed on evolution i.e. system must have a specific frequency response.
- Some analogue circuits are too difficult or costly to design by humans.

Challenges

- Scalability is an issue. Time complexity of evolutionary algorithm for evolvable hardware.
- Time is crucial since size of chromosome scales complexity in a polynomial manner.
- If we evolve hardware when do we stop evolution.
- This system is good at generalisation dealing with new environments.
- Disaster prevention in fitness evaluation during on-line adaptation.
- Finally, EHW is good at discovering novel circuits that would not normally be designed.

Reconfigurable Computers in Space, Neil Bergman

- Reconfigurable computing has no killer applications terrestrially but it does in space.
- Advantages:
 - After launch, spacecraft electronics are unavailable for physical upgrade or repair.
 - New circuit configurations can overcome design faults or change functionality.
 - The same circuitry can be used for different tasks reducing weight and power requirements.
 - Routing can be performed around failed parts.
 - FPGAs allow generic spacecraft circuit boards to be constructed rather than a series of specific ones.

Disadvantages:

- Ionising radiation can flip EPROM or SRAM bits.
- Links to spacecraft are low bandwidth and high error rate. Can be a problem when downloading 1Mbit configuration files.
- Limited by on-board configuration storage's susceptibility to radiation.

- Problems could be solved by triple redundancy voting circuits or CRC checking techniques.
- Need space friendly FPGAs such parts are usually 10 years behind current technology.
- Space Friendly definition:
 - Can check themselves for errors.
 - Have special diagnostic logic.
 - Techniques needed to avoid "dodgy" circuitry.
 - Thin substrate needed less volume for radiation interference.
 - Error detecting logic, fault secure logic or complementary logic required.
 - Single chip/MCM combination of FPGA, micro controller and flash memory.

Fault Tolerant Reconfigurable Computing, Heiko Schröder

- Due to radiation:
 - Single event upsets (common).
 - Latches stuck (need extra hardware).
 - Total loss (rare at 800km above Earth's surface).
- Methods used for fault tolerance:
 - Shadow processors.
 - Majority voting schemes.
 - Byzantine systems.
- Component grade hierarchy:
 - Industrial
 - Military
 - Radiation Tolerant
 - Radiation Hardened

Self Organisation of Reconfigurable Architectures, Uwe Tangen

- Hardware evolution:
 - Simulation of evolving hardware.
 - Instantiated hardware optimisation.

- Biological evolution.
- DNA or RNA can be considered as just a bit string.
- Enzymes are the circuits.
- The problem is difficult to solve:
 - Combinatorial explosion of 2^{2ⁿ}.
 - Mismatch between coding length and power.
 - Inflexibility of routing.
- Conclusions:
 - Self organisation in Si is possible.
 - Coding seems to be a central issue.

Experiences with Reconfigurable Computing and Further Work, Tobias Oppold

- Java is used to produce an object oriented breakdown of the system either in SW (micro controller) or in HW (FPGA).
- Java to VHDL to Netlist to Configuration Data.
- Tensilica: Xtensa processor http://www.tensilica.com/
- Omnipath Processor (NEC) Something in between a parallel processor and programmable logic. Multiple contexts with a switching time of ~2ns between contexts e.g. in one context an element is an adder, in another a XOR gate.

The Third Way - Neither Hard Nor Soft Ware, Gordon Brebner

- Hardware connotations: Logic, processors, datapaths, computer architectures, fixed I/O etc.
- Software connotations: Programs, scripts, GUIs, algorithms etc.: i.e. flexible.
- Alternative phrase: Run time reconfigurable systems.
- New technological influences:
 - System level integrated chips.
 - Configurable logic arrays.
 - Photonic technologies.
- Future
 - Networks of diverse programmable information handling components from chip level upwards.

- Communication is the key problem.
- Death to the bus.
- Expressing diverse programmability:
 - 'Architecture' is the programmable thing.
 - 'Algorithm' refers to the programming.
- What is the optimal level of abstraction?
- Towards the third way:
 - Resist existing abstractions could be too abstract.
 - Investigate incremental stepping stones towards future system design don't solve everything too soon.
 - Invent new information handling models and system design processes.
- The barriers between computing, electronics and Photonics must be broken down.
- Many potential from the "disappearing computer" in the appliance or location.

Makimoto's Wave, the 2nd Design Crisis and the Future of Reconfigurable Computing, Reiner Hartenstein

- Microprocessor provides the most functionality, however the most silicon is used in accelerators.
- "Tail wagging the dog".
- Why not make accelerators reconfigurable.
- Logic synthesis i.e. hardware design by mapping onto a strange platform using CAD.
- Makimoto's Law: "Mainstream silicon application is changing every 10 years."

I2K-Microprossors and Reconfiguration, Klaus Waldschmidt

- Core of modern analogue and digital circuits.
- Size 'wall' of 0.1µm technology.
- Supply cannot be reduced under 1V.
- In semiconductors light propagates with one tenth of the speed it does in a vacuum.
- Memory capacity scales with the square of chip size. Access time is not increasing in the same way.

- Superscalar architectures use out of order processing.
- Complexity Effective Superscalar processor: Splits related processes instructions into FIFO pipelines. (Ref. Norman P. Jouppi).
- Prediction
 - To branch or not to branch.
 - Early estimation of control flow decisions.
- Configuration flow-cache for reconfiguration of functional units.
- Parallelism: co-operative load balancing at run time. Medium or coarse grain parallelism e.g. threads or microthreads.
- Configuration by programming language and compilers. Add circuit descriptions in (for example) VHDL using code.

Configurable System on Chip, Reiner Kress

- Configurable SoCs from Infineon AG.
- Designers need:
 - Configurable DSP instruction set.
 - Configurable SoC architecture.

Infrastructure of PCI Pamette, Mark Shand

- The Pamette is a reconfigurable memory mapped PCI board.
- Oriented to I/O and interfacing applications.
- PAM: Programmable Active Memory.
- Architecture has no processor on board the system must have a host processor anyway.
- Compiler designed. Wanted to write code and not draw designs.
- Protect system against user misuse or program crash so it doesn't bring the host down.
- Bitstream compression works well (don't listen to Xilinx). Just try using gzip.
- http://www.research.digital.com/SRC/pamette

Asynchronous Run-Time Reconfiguration (RTR), Simon Taylor

- Problems: Lack of tools and difficult designs.
- Asynchrony can split circuit across multiple FPGAs.

- Conventional FPGAs have problems that make asynchrony difficult. Asynchronous architectures are therefore required.
- 'Montage' can run synchronously or asynchronously.
- PGA-STC uses a programmable delay element to satisfy local timing constraints.
- STACC designed for implementation of self-timed reconfigurable systems.
- Clock is replaced by an array of timing cells. The advantage is that timing cells can be optimised for a specific task.

Embedding Express Graphs into Networks, Manfred Kunde

- Reducing the diameter of a network.
- Diameter is the longest distance between nodes i.e. maximum hop count.
- Motivated by ATM networks.
- First structure considered was ring. Can reduce average hops of N to $2.81\sqrt{N}$.
- Can also be used on mesh topology, H-tree or 3D H-tree.
- Graphs with Hamiltonian cycles allow you make full use of the ring concept.
- Must space node links evenly for optimal usage.

Using Optoelectronic Interconnects for Run-Time Reconfigurable Arrays, Dietmar Fey

- Motivation:
 - Increase in chip density $\alpha = 2$.
 - Increase in chip size $\beta = 2$.
 - Before: 5×5 elements. After: 5×5×2²×2²=400 elements.
- MQWs can also be used as detectors.

Prototyping Environment for Reconfigurable Processors, Serjei Savitzki

- Reconfigurable processors: PRISC, nP, Spyder, OneChip, Garp, CoMPARE, NAPA1000, Proteus.
- Approaches to prototyping:
 - Dedicated environment multi-FPGA boards with on-board memory (\$10,000 to \$100,000).

- Commercial multi-FPGA boards that operate inside computer using dedicated software (\$1,000 to \$10,000).
- Evaluation module available from manufacturer only with specific card tools (<\$1,000).
- Requirements for test environment:
 - Flexibility Reconfiguration times should be kept short.
 - Scalability Unsatisfactory mapping as it scales.
 - Observability Can watch what the FPGA is doing at various stages: i.e. state information.

Evaluating DSPs with Dynamically Reconfigurable Processing Units, Steffen Köhler

- Processing of streaming data efficiently done by application specific DSP.
- DSP only suitable for a narrow range of applications.
- Performance enhancements only possible through hardware exchange.
- Could increase number of processing units (PUs), improve clock rate or introduce new computational topologies.
- RPU: Reconfigurable Processing Units.

The P2NC Project or How Much Parallelism is There?, Yosi Ben-Asher

- Consider the problem of speedup in sequential programs by means of parallelism.
- P2NC compiles sequential programs into boolean circuits and then executes them in parallel using a probabilistic algorithm.
- Parallelism is best exposed when programs are compiled into circuits.
- Modern processors are based on instruction level parallelism (ILP).
- Goals:
 - To produce upper bounds on parallelism when using ILP.
 - Evaluate potential improvement for compilation to circuits.
 - Probabilistic method used by P2NC can lead to new type of architecture that is not von-Neumann based.
- Metrics:
 - Depth of parallelism (DP) the ratio between the size of a circuit and its depth.
 - Potential speedup (PS) ability to speedup.

- Execution of a program using probabilistic methods to evaluate the circuit.
- The circuit evaluation problem (CVP) is P complete and even its approximation is known to be hard.
- Expose parallelism by:
 - Loop unrolling.
 - Compiler/hardware scheduling where compiler/hardware groups independent instructions.
 - False memory dependencies.
 - Branch prediction speculative execution of iterations based on predictions of the branch that will be taken.
 - Pipeline parallelism not relevant as there is no load/fetch/decode. Everything is in one circuit.

Acceleration of Satisfiability Algorithms by Reconfigurable Hardware, Marco Platzner

- Application areas:
 - CAD of digital circuits, synthesis, optimisation, test pattern generation and verification.
 - Cryptography (encoding and decoding).
- Problem is NP complete.
- Software solves by using a backtracking tree search algorithm.
- Hardware does not change asymptotic runtime complexities.
 - Less powerful strategies than software.
 - Fast deduction by exploiting parallelism in problem instances.
- Instance specific reconfiguration new hardware for each problem instance. Circuit generation and FPGA configuration at runtime.
- Required application characteristics:
 - Fine grained parallelism instance.
 - Long runtimes with each new instantiation.
- Optimisations:
 - Order variables.
 - Choose assignment order.
 - Check for special cases.

Cellular Automata with Reconfigurable Busses, Thomas Worsch

• Cellular Automata: Finite state machine operating on data and interconnected using some architecture to one of its neighbours.

Why and How Should We Use FPGAs to Run Mobile Code, Frederic Raimbault

- Specialised virtual configurable arrays (SVCA).
- Dynamically reconfigurable virtual machine (DRVM).
 - Improves runtime for mobile code.
- Mobile code an evolving concept.
 - Transferred in place client/server model (SQL).
 - Loaded on demand (HTML, appalets).
 - Autonomous agents (Aglets, Odessey, Voyager).
- Mobile code is useful for:
 - Reducing network load.
 - Disconnected (off-line) network mode.
- Already used in e-commerce and telecommunications runtime services.
- Java (OO and Java virtual machine) benefits:
 - Dynamic classes and safe memory handling.
- Java drawbacks:
 - Software complexity (installation is 70MB).
 - Resource hungry.
 - Performance: 10-100 times slower.
 - Raised security problem executed on host.
 - Runtime rigidity monolithic core, complex entangled data structures.
- Solution: put code on runtime reconfigurable hardware.

Specialised Virtual Configurable Arrays, Dominique Lavenier

- Just ideas, still no implementation.
- Wish to design "hardware" support that is independent of FPGA family architecture.
- Use CLBs as routing resources.

Hardware/Software Elements, Bernard Pottier

- Hardware resources are increasing faster and faster design cost remains linear to this increase.
- Design time is critical.
- Main idea is homogeneous use of object models.
- Redesigning everything down to hardware with one methodology is attractive because:
 - No loss of semantics due to software layering.
 - Avoid layer instability.
 - Zero black box operation.
- Portability on reconfigurable parts is key.
- C model does not fit on-chip multiprocessing and has complex syntax.

Lava, Satnam Singh

- Synthesis not possible with Lava only a structured definition tool.
- No CLB locations a little bit of architecture independence.
- Gives you back the composite circuit.
- Humans better at placing (layout) than the computer.
- Computer better at routing.

The FURI Runtime Reconfigurable Environment, Adam Donlin

- The ultimate RISC (URISC).
- Single instruction processor move memory to memory.
- Migrate compute elements to system bus.
- Flexible URISC (FURI).
- Exploit dynamicism expand and contract system bus.
- Self modifying circuitry: memory mapped configuration SRAM. Self modification considered a taboo in modern systems.
- Must be able to configure on-line partially reconfigurable architectures are essential.
- Non-technical requirement open architecture FPGA.
- Can be static (predefined configuration schedule) or dynamic (primitive operating system).
- Offline store of circuitry available on request.

Reconfigurable Functionality - The OS Perspective, Michael Dales

- Add configurable units to CPU ALU.
- OS needs to be altered to support addition so no processes reconfigure units being used by other processes.
- Single large resource is bad.
- Resource management divide the available resources.
- Loading circuits what happens in an interrupt occurs?
 - Delay interrupt?
 - · Back off and restart?
- Checkpoints during loading to handle interrupts.

Operating Systems Support for Dynamically Reconfigurable Architectures, Oliver Diessel

- Motivation:
 - Growing size of reconfigurable logic resource.
 - Growing range and integration of applications.
 - Orientation towards real time tasks.
- How do you manage and support logic resources in a multitasked environment.
 - Space/time.
 - Fixed/variable partitioning.
- Fixed partition size advantages:
 - Easy to design for.
 - Fault tolerant.
 - Manageable.
 - Location independent.
- Fixed partition size disadvantages:
 - Task performance can suffer.
 - · Fragmentation.
- Variable partition size advantages:
 - Optimal performance i.e. right amount or resource allocated.
 - · Better utilisation.

- Variable partition size disadvantages:
 - Scheduling complexity to cope with dynamic resource availability.
 - External fragmentation.
- Coping with variable size tasks:
 - Wait for or pre-empt executing tasks.
 - Move executing tasks to free up space (garbage collection).
 - Adapt incoming task to space available at runtime. Requires fast partitioning, placement and routing.
- Long term goals are to develop accurate and efficient indicators to accept or reject a task.

Task Rearrangement of Partially Reconfigurable FPGAs With Restricted Buffer, Martin Middendorf

- Examines the placement of tasks in a reconfigurable array.
- Total Reconfiguration: All tasks stopped and rearranged.
- Partial Reconfiguration: Single tasks relocated while others execute.
- Input data streams of the suspended tasks must be buffered.
- Use genetic algorithm to schedule tasks.

Devil's Advocate - The Von-Neumann Bottleneck and Other Myths, Mark Shand

- Reconfigurable can do real time i.e. nanoseconds to 10s of microseconds.
- Reconfigurable usually thought of as power efficient but watch out though for the Transmeta.
- Right granularity is important: Bit, functional unit, CPU, multiprocessor.
- Instruction set is market driven.

Dynamically Reconfigurable Logic and System on Chip, Patrick Lysaght

- Dynamically reconfigurable: Devices that can be selectively reconfigured while running.
- In other words, the floor plan is a function of time.
- With more logic and more tasks on an FPGA it is less likely that all tasks execute simultaneously.
- Difference between adjacent logic families in FPGAs is increasing.
- Deep sub-micron (DSM) is a device with a transistor pitch <0.5μm.

• DPCS: Delay and power calculation system.

Associative Parallel Processing for Logic Event-Driven Simulation (APPLES), Damian Dalton

- Minimise support tasks.
- Identify essential element operations.
- Retain functionality.
- Normally only 5-10% of gates in a circuit are active.
- Current simulators evaluate all gates and therefore have 90-95% redundancy.
- Problem lies in active gate identification.

Cyclic Cutwidth of Meshes, Ondrej Sýkora

- Motivation for meshes:
 - Natural data structure in many problems (e.g. the matrix).
 - Constant degree.
 - Many algorithms developed.
 - As parallel or distributable computing systems: implementable with short wires therefore little signal propagation delay.

Keith J. Symington

List of Participants

Dagstuhl seminar 00261

Date: 25.06.2000 - 30.06.2000

Title: Dynamically Reconfigurable Architectures

Webpage: http://www.dagstuhl.de/DATA/Participants/00261.html

Marcus Bednara

Universität Paderborn FB 14 - Elektrotechnik Pohlstr. 47-49 Postfach 162 E D-33098 Paderborn

D

phone: +49-5251-60-3921 fax: +49-5251-60-4221 e-mail: bednara@date.upb.de

url: http://www-date.uni-paderborn.de/

Yosi Ben-Asher

Haifa University

Dept. of Computer Science

IL-32000 Haifa

IL

phone: +972-4-8240338 e-mail: yosi@cs.haifa.ac.il url: http://cs.haifa.ac.il/yosi

Neil W. Bergmann

Queensland University of Technology

CRC - Satellite Systems 2 George Street GPO Box 2434 QLD 4001 Brisbane

ΑU

phone: +61-7-3864-2785 fax: +61-7-3864-1516 e-mail: n.bergmann@qut.edu.au url: http://www.crcss.qut.edu.au

Gordon Brebner

University of Edinburgh Division of Informatics James Clerk Maxwell Building

Mayfield Road EH9 3JZ Edinburgh

GB

phone: +44-131-650-5180 fax: +44-131-667-7209 e-mail: G.Brebner@ed.ac.uk

Michael Dales

University of Glasgow Dept. of Computing Science 17 Lilybank Gardens G12 8RZ Glasgow

GB

phone: +44-141-330-6297 fax: +44-141-330-4913 e-mail: michael@dcs.gla.ac.uk

url: http://www.dcs.gla.ac.uk/~michael

Damian Dalton

University College Dublin
Dept. of Computer Science

IRL - 4 Dublin

IRL

phone: +353-1-7062477 fax: +353-1-269-7262 e-mail: damian.dalton@ucd.ie

url: http://www.cs.ucd.ie/staff/ddalton/

Oliver Diessel

The University of New South Wales School of Computer Science and Engineering NSW 2052 Sydney

ΑU

phone: +61-2-9385-5922 fax: +61-2-9385-5995

e-mail: odiessel@cse.unsw.edu.au

url: http://www.cse.unsw.edu.au/~odiessel

Adam Donlin

University of Edinburgh
Dept. of Computer Science
James Clerk Maxwell Building

Mayfield Road EH9 3JZ Edinburgh

GB

phone: +44-131-650-5144 fax: +44-131-667-7209 e-mail: adamd@dcs.ed.ac.uk

url: http://www.dcs.ed.ac.uk/~adamd/

Rolf Drechsler

Universität Freiburg Institut für Informatik Am Flughafen 17 D-79110 Freiburg

D

phone: +49-761-203-8145 fax: +49-761-203-8142

e-mail: drechsle@informatik.uni -freiburg.de url: http://www.informatik.uni -freiburg.de/

~drechsle

Hossam El Gindy

University of New South Wales

School of Computer Science and Engineering

Office EE Bldg. Room 339 NSW 2052 Sydney

ΑU

phone: +61-2-9385-4034 fax: +61-2-9385-5995

e-mail: elgindy@cse.unsw.edu.au

url: http://www.cse.unsw.edu.au/school/people/

info/elgindy.html

Dietmar Fey

Universität Siegen

Inst. für Rechnerstrukturen

Hölderlinstr. 3 D-57068 Siegen

D

phone: +49-271-740-2474
fax: +49-271-740-2473
e-mail: fey@rs.uni-siegen.de
url: http://www.rs.uni-siegen.de

Reiner W. Hartenstein

Universität Kaiserslautern

FB Informatik

Lehrstuhl Rechnerstrukturen

Postfach 3049

D-67653 Kaiserslautern

D

phone: +49-631-205-2606 fax: +49-631-2052640 e-mail: hartenst@rhrk.uni-kl.de

url: http://xputers.informatik.uni -kl.de

Rainer Kress

Infineon Technologies AG Corporate Development Otto-Hahn-Ring 6 81739 München

D

phone: +49-89-234-50806 fax: +49-89-234-44950 e-mail: rainer.kress@infineon.com url: http://www.infineon.com Manfred Kunde

Technische Universität Ilmenau

Fakultät für Informatik und Automatisierung FG Automaten und Formale Sprachen

Postfach 100565 D-98684 Ilmenau

D

phone: +49-3677-692-766 fax: +49-3677-69 12 37

e-mail: kunde@theoinf.tu-ilmenau.de url: http://eiche.theoinf.tu-ilmenau.de

Steffen Köhler

TU Dresden Fakultät Informatik D-01062 Dresden

D

phone: +49-351-463-8452 fax: +49-351-463-8324 e-mail: stk@ite.inf.tu-dresden.de

Dominique Lavenier

Université de Rennes 1 Campus de Beaulieu Avenue du Général Leclerc

F-35042 Rennes

phone: +33-2-99 84 72 17 fax: +33-2-99 84 71 71 e-mail: lavenier@irisa.fr

url: http://iww.irisa.fr/api/Lavenier/

Patrick Lysaght

University of Strathclyde

Dept. of E&EE 204 George Street G1 1XW Glasgow

GB

phone: +44-1548-2249 fax: +44-1552-4968

e-mail: p.lysaght@eee.strath.ac.uk url: http://www.eee.strath.ac.uk/staff/

Falko Mattasch

Friedrich-Schiller-Universität LST für Rechnerarch itektur

Fakultät für Mathematik u. Informatik

Ernst-Abbe-Platz 1-4 D-07743 Jena

D

e-mail: mattasch@informatik.uni-jena.de

Martin Middendorf

Universität Karlsruhe Institut AIFB D-76128 Karlsruhe

D

phone: +49-721-608-3705 fax: +49-721-693-717

e-mail: mmi@aifb.uni-karlsruhe.de url: http://www.aifb.uni-karlsruhe.de/

~middendorf

Viorel Onofrei

Technical University
Dept. of Computer Science
B-dul Dimitrie Mangeron Nr. 53A

RO-6600 lasi

RO

phone: +40-32-232-430 fax: +40-32-214-290 e-mail: onofrei@tuiasi.ro

url: http://eureka.cs.tuiasi.ro/~onofrei

Tobias Oppold

Universität Tübingen

Wilhelm-Schickard-Institut für Informatik

Raum 126 Sand 13

D-72076 Tübingen

D

phone: +49-7071-29-78977 fax: +49-7071-29-5062

e-mail: oppold@informatik.uni-tuebingen.de url: http://www-ti.informatik.uni-tuebingen.de/

~oppold/

Marco Platzner

ETH Zürich

Institut für Techn. Informatik und

Kommunikationsnetze TIK - ETZ G-85 Gloriastr.35 CH-8092 Zürich

СН

phone: +41-1-632-7544 fax: +41-1-632-1035 e-mail: platzner@tik.ee.ethz.ch

url: http://www.tik.ee.ethz.ch/~platzner

Bernard Pottier

Université de Bretagne Occidentale

Dept. Informatique 6 avenue Victor Le Gorgeu

BP 809 F-29287 Brest

F

phone: +33-2-98 01 62 17 fax: +33-2-98 01 62 16 e-mail: pottier@univ-brest.fr

url: http://penarvir.univ-brest.fr/~pottier/

Frederic Raimbault

Université de Bretagne Sud

UFR SSI 1 Rue de la Loi F-56000 Vannes

F

e-mail: frederic.raimbault@univ-ubs.fr

Sergej Sawitzki

TU Dresden Fakultät Informatik

Dü 242

D-01062 Dresden

D

phone: +49-351-4638458
e-mail: ss9@irz.inf.tu-dresden.de
url: http://www.inf.tu-dresden.de/~ss9/

Hartmut Schmeck

Universität Karlsruhe

Institut AIFB D-76128 Karlsruhe

D

phone: +49-721-608-4242 fax: +49-721-608-6581

e-mail: schmeck@aifb.uni-karlsruhe.de

url: http://www.aifb.uni-karlsruhe.de/~schmeck

Heiko Schröder

Nanyang Technological University School of Computing Engineering

Nanyang Avenue 639798 Singapore

SGP

phone: +65-790 6045 fax: +65-791 5927 e-mail: asheiko@ntu.edu.sg

Mark Shand

Compaq Systems Research Center

130 Lytton Ave. CA94301 Palo Alto

USA

phone: +1-650-853-2236 fax: +1-650-853-2237 e-mail: shand@pa.dec.com

url: http://www.research.digital.com/SRC/staff/

shand/bio.html

Satnam Singh

Xilinc Inc. 2100 Logic Drive CA 95124 San José

USA

e-mail: satnam.singh@xilinx.com url: http://www.xilinx.com

John Snowdon

Heriot-Watt University Dept. of Physics Riccarton Campus EH14 4AS Edinburgh

GB

phone: +44-1-31-451-3026 fax: +44-1-31-451-3136 e-mail: j.f.snowdon@hw.ac.uk

Rainer G. Spallek

TU Dresden

Fakultät Informatik

Inst. für Technis che Informatik

D-01062 Dresden

D

phone: +49-351-463-8243 fax: +49-351-463-8324 e-mail: rgs@ite.inf.tu-dresden.de

Ondrej Sykora

Loughborough University of Technology

Dept. of Computer Studies LE 11 3TU Loughborough

GB

phone: +44-1509-222692 fax: +44-1509-211586 e-mail: O.Sykora@lboro.ac.uk url: http://www.lboro.ac.uk

Keith Symington

Heriot-Watt University Dept. of Physics Riccarton Campus EH14 4AS Edinburgh

GB

phone: +44-131-451-3040 fax: +44-131-451-3136 e-mail: kjsymington@iee.org

Uwe Tangen

GMD

BioMip - Biomolecular Information Processing

Schloss Birlinghoven D-53754 St. Augustin

D

phone: +49-2241-14 15 30 fax: +49-2241-14 15 11 e-mail: tangen@gmd.de url: http://www.gmd.de/

Simon Taylor

University of Edinburgh Division of Informatics James Clerk Maxwell Bldg. Mayfield Road

EH9 3JZ Edinburgh

GB

fax: +44-131-667-7209 e-mail: sim@dcs.ed.ac.uk

Jürgen Teich

Universität Paderborn FB 14 - Elektrotechnik Pohlstr. 47-49 Postfach 162 E D-33098 Paderborn

D

phone: +49-5251-603-002 fax: +49-5251-603-424

e-mail: teich@date.uni-paderborn.de url: http://www-date.uni-paderborn.de/

Jozsef Vasarhelyi

University of Miskolc Dept. of Automation Egyetemvaros H-3515 Miskolc

Н

fax: +36-46-431-822/+40-64-194-822 e-mail: vajo@mazsola.iit.uni -miskolc.hu

Bernd Vettermann

Fachhochschule Mannheim

Hochschule für Technik & Gestaltung

Windeckstr. 110 D-68163 Mannheim

D

phone: +49-621-292-6313 fax: +49-621-292-6454

e-mail: b.vettermann@fh-mannheim.de

Klaus Waldschmidt

Universität Frankfurt FB 20 Informatik Techn. Informatik Robert-Mayer-Str. 11-15

PF 11 19 32 D-60054 Frankfurt

D

phone: +49-69-798-28248 fax: +49-69-798-22351

e-mail: waldsch@ti.informatik.uni -frankfurt.de

Thomas Worsch

Universität Karlsruhe Fakultät für Informatik Am Fasanengarten 5 Postfach 6980 D-76128 Karlsruhe

D

phone: +49-721-608-43 11 fax: +49-721-69 86 75 e-mail: worsch@ira.uka.de

url: http://liinwww.ira.uka.de/~worsch/

Xin Yao

University of Birmingham School of Computer Science

Edgbaston

B15 2TT Birmingham

GB

phone: +44-121-414-3747 fax: +44-121-414-4281 e-mail: X.yao@cs.bham.ac.uk

url: http://www.cs.bham.ac.uk/~xin/

Eberhard Zehendner

Universität Jena Institut für Informatik Ernst-Abbe-Platz 1-4 D-07743 Jena

D

phone: +49 3641 946385 fax: +49 3641 946372 e-mail: zehendner@acm.org

url: http://www2.informa tik.uni-jena.de/~nez/