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Abstract 

Future computing systems will offer greater processor performance using either 

conventional or emergent technologies.  However, few of these systems address data 

locality issues such as moving information from processor to memory, storage or 

another processor.  Electrical interconnection even across a large substrate is becoming 

prohibitive due to intrinsic bandwidth limitations.  Optoelectronics is presently the only 

viable solution to alleviate this problem and has already superseded electronics for long-

haul transmission.  This thesis examines the benefits of optical interconnection at a 

short range chip-to-chip level, both in free space and in a waveguide.  It shows that 

optoelectronics enables a connectionist approach to computing allowing the 

construction of architectures such as a neural network.  Simulation maps the assignment 

problem to this type of architecture and underlines both its performance and startling 

scalability.  The algorithm is then implemented, resulting in the construction of two 

optoelectronic neural network demonstrators, both of which use high density free-space 

optical interconnection.  The respective performance of these demonstrators is then 

examined.  Finally, the mutual benefits of integrating an optical interface to dynamically 

reconfigurable field programmable gate arrays (FPGAs) are considered. 
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1 Introduction 

"Leave the beaten track occasionally and dive into the woods. Every time you do 

so you will be certain to find something that you have never seen before. Follow it 

up, explore all around it, and before you know it, you will have something worth 

thinking about to occupy your mind. All really big discoveries are the result of 

thought." 

Alexander Graham Bell, Inventor of the Telephone 

The communications revolution began with the introduction of the telegraph which 

enabled long distance communication of information at high speed.  Although work on 

the transmission of information by wire had been in progress since the beginning of the 

19th century, the most successful implementations of the telegraph were made 

independently in 1837 by Cooke and Wheatstone in Britian and Morse in the United 

States.  The telegraph was eventually superseded by the telephone in 1876 when Bell 

invented and patented his design.  Interestingly, Bell also invented an optical telephone 

four years later which he referred to as the Photophone.  Vibrations in a mirror caused 

by sound were transmitted on a focussed ray of sunlight to the receiver.  Unfortunately, 

his idea proved impractical as not only did the device require sunlight to operate but the 

absorbtivity of air limited its range.  Long distance communications were to remain 

exclusively in the electrical domain for many years to come. 

Optical communications finally came of age with the invention of the laser, an 

application of Einstein's theory that a photon could stimulate an excited atom to emit  

another identical photon.  Such a device was proposed by Schawlow and Townes [1] in 

1958 but it was four years before semiconductor based devices were demonstrated, 

almost simultaneously, by four different research groups [2]-[5]. 

Today's versions of these components have evolved considerably since their inception.  

This is due not only to new and more efficient fabrication technologies but also to 

radical new ideas.  Long haul fibre optic communications systems have become 

prevalent with almost every long distance call travelling through fibre-optic cabling at 

some point on its journey.  Optic technologies have begun to encroach on areas that 

were once firmly considered to be the domain of electronics. 
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Although the advantages of long distance optoelectronic systems, such as fibre optics, 

are well known, the drastically increased information flow that they present electronic 

systems with is a serious problem as this information must be routed and switched in 

real time.  This thesis shows that short distance optoelectronic systems enable the 

construction of novel architectures, not feasible in electronics, which can alleviate the 

very problems that long distance optoelectronic interconnects create. 

The scope and layout of this thesis is summarised in Figure 1.  Each chapter is described 

in detail in the following paragraphs. 

Chapter 2: Optical Interconnects and Switching is a theoretical introduction to the areas 

of both optoelectronic interconnects and packet switching.  It looks at the limitations 

electronic interconnects are facing and discusses how optical interconnects can alleviate 

this problem.  Optics also has other properties that set it aside from electronics as it 

allows complex interconnection patterns to be created relatively easily.  This chapter 

also discusses packet switch architectures in detail, presenting theory on the packet 

based transmission systems that voice and data communications are converging on.  

Basic concepts and measures are examined along with packet switch architectures such 

as the crossbar and multistage interconnection network (MIN). 

Chapter 3: Optical Technologies and Switching examines the components used to 

transfer any electrical signal to the optical domain, guide it to its destination and return 

it to the electronic domain at the receiving end.  Such technologies can be integrated at 

different levels, a few of which are examined here.  This chapter also presents an optical 

highway architecture suited to high bandwidth multiprocessor systems, examining how 

and where optoelectronics could be inserted to interconnect multiple nodes. 

Chapter 4: Neural Networks for Switching highlights the properties and uses of neural 

networks, examines a few common neural network architectures and defines their 

performance measures.  Neural networks are well suited to solving optimisation 

problems and a network is derived to perform packet switch scheduling.  This network 

is simulated and its characteristics compared and contrasted with conventional packet 

switch schedulers.  Scalability is examined in depth with surprising conclusions drawn 

on its relationship to performance. 
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Figure 1: Thesis Overview 
See text for a full description of each chapter. 

Chapter 5: Neural Network Demonstrators examines two optoelectronic neural 

networks demonstrators, both of which can only be implemented in a scalable manner 

in optoelectronics, that algorithmically outstrip any other known purely electronic 

solution for packet scheduling.  The first generation neural network demonstrator 
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provides proof of principle using discrete building blocks to construct a working 

system.  The second generation provides enhanced functionality in the form of packet 

prioritisation and active calibration.  The integration of digital signal processors (DSP) 

adds programmability resulting in a generalised neural network architecture.  Results 

and analysis are presented for both of these demonstrators. 

Chapter 6: Optically Interconnected FPGAs provides a case study detailing how optical 

interconnection provides an elegant method of circumventing a common electronic 

component's intrinsic limitations.  The evolution of this device is examined.  Initially, 

optoelectronic interconnection proved unnecessary.  However as device size, 

complexity and performance increased, so did its need for the additional bandwidth 

gained using optoelectronic interconnects. 

Chapter 7: Conclusion examines the future of short range optical interconnects and 

where the author sees them in the next few decades.  The reasons why computer 

technologies on the horizon compound current interconnection problems are considered. 

The author hopes to provide an up to date snapshot of state-of-the-art optoelectronic 

components with evidence to support chip-to-chip level optical interconnection 

complementing existing long distance links.  Experiment follows theory, with the 

detailed examination of two fully operational optoelectronic neural network 

demonstrators exploiting short range interconnects. 
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2 Optical Interconnects and Networks 

This chapter contains theory essential to the understanding of this thesis.  It has two 

distinct threads which initially seem unrelated to each other.  Their relationship 

becomes apparent in chapters 4 and 5. 

2.1 Optoelectronic Interconnects 

Optoelectronic devices act as an interface by converting an electrical signal into the 

optical domain or vice versa.  The properties of the signal differ depending on domain.  

This section examines the motivation for converting a signal into the optical domain and 

the associated benefits that are brought to very large scale integration (VLSI) 

interconnection as a whole. 

2.1.1 Electrons Versus Photons 

The difference between electronics and optics is essentially the difference between the 

electron and the photon as shown in Figure 2.  Since electrons carry mass and charge, 

they interact strongly with each other making them ideally suited to switching.  Photons, 

on the other hand, do not carry mass or charge and are therefore non-interacting in free 

space.  This makes them immune to magnetic interference, be it from man made sources 

such as electric motors or from environmental effects such as lightning.  Therefore, 

photons are ideally suited as long distance data carriers [6] with the telecommunications 

industry having largely abandoned electrical interconnection in favour of fibre optics. 

Figure 2: Properties of Electrons and Photons 
Electrons interact strongly whereas photons do not interact at all. 
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The propagation speed of electrons compared to that of photons is dependent on the 

transmission medium refractive index n.  Equation 1 describes the velocity v at which 

any signal propagates where c is the speed of light: 

 
n
cv =  Equation 1 

Depending on transmission medium, the electron sees a refractive index of n ≈ 1.3-2.5 

[7]-[8].  In waveguides such as a fibre optic core, the photon sees a refractive index of 

n ≈ 1.4-1.6 [9].  This indicates that the propagation speeds of electrons and photons are 

comparable, with electronics significantly slower in the worst case.  The only major 

difference is when free space is used to transmit photons since n ≈ 1.0.  However 

absorbtivity in anything but a vacuum restricts all practical usage to short range only. 

2.1.2 Transmission Lines 

Optoelectronic systems attempt to make the best of both worlds by using electrons to 

switch data and photons to carry data.  By this definition, optics attempts to replace 

electrical transmission lines. 

An electrical signal is considered to be in the transmission line domain [10]-[11] when 

conductor length l is: 

 
eff

r

ε
vt

l >>  Equation 2 

where v is the velocity of the signal in the transmission medium in 1ms− .  The full scale 

signal rise time tr indicates, but does not measure, the frequency of the signal.  

Normally, a signal will rise to its maximum and remain there for two or three times the 

duration of tr.  The other parameter in this equation is the relative dielectric constant of 

the line effε , taken to be approximately 3.5 for a glass epoxy circuit board.  Given that 

nanosecond rise times are common in electrical components, printed circuit board 

(PCB) tracks are considered to be transmission lines when their length is greater than a 

few centimetres. 

Electrical transmission lines are modelled as shown in Figure 3.  The inductance Ll, 

capacitance Cl and resistance Rl are all considered per unit length.  The impedance of 

the cable can therefore be modelled over an infinite length using: 

 
l

ll
l fCj

fLjR
Z

π
π+

=
2

2
 Equation 3 
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where f is the frequency at which the system is modelled. 

Figure 3: Electrical Transmission Lines 
Signal transmitted from source to destination.  The transmission line has Ll , Cl and Rl per 
unit length.  Note that the pads also contribute to Cl. 

Under most circumstances, the real resistance Rl of the conductor per unit length can be 

approximated as zero resulting in a characteristic impedance of: 

 
l

l
l C

L
Z =  Equation 4 

This information allows calculation of signal velocity in the medium using: 

 
llCL

v 1
=  Equation 5 

Transmission line optimisation requires impedance matching as shown in Figure 4. 

Figure 4: Impedance Matching 
Signal transmitted from source to destination.  Zs is the source impedance, Zl the 
transmission line impedance and Zd destination load impedance. 

To ensure that all power from the source is transferred into the transmission line, Zs 

must equal Zl.  The same impedance matching criteria apply to power transfer from 

transmission line to destination, where Zl must equal Zd.  If the destination is not 

correctly impedance matched then signal back reflection will occur, as shown in Figure 

5.  Here, a square wave signal with rise time tr is applied to a transmission line.  As not 

all of the signal's power is absorbed by the destination impedance, the remainder is 
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reflected back into the transmission line.  This results in standing interference waves in 

the transmission line. 

Figure 5: Reflection in Transmission Lines 
No impedance matching results in reflected wave interference as shown by the solid blue 
line.  Impedance matching transfers all power to the destination as shown by the dashed 
red line. 

Electrical impedance matching can be achieved by using a resistive load with 

impedance Zd that matches the impedance of the transmission line Zl.  Regardless of 

how a line is terminated, if correctly impedance matched no reflections will occur and 

all power will be absorbed within the terminator Zd: giving rise to thermal concerns.  At 

the transmitter, an appropriate drive current must be supplied resulting in further 

thermal concerns and considerably reducing physical packing density.  To serve as an 

illustration, let us consider a 32-bit wide bus of 50 Ω  terminated transmission lines with 

a 3.3V swing operating at 50% duty cycle.  Equation 6 calculates the amount of power 

dissipated in the terminating resistors and Equation 7 the required drive current. 

 W49.3
2
132

2

=××
R

V
 Equation 6 

 A11.232 =×
R
V

 Equation 7 

This is quite a considerable figure to add to most power supply requirements.  The 

problem is currently ignored by bus designers who limit their architectures to minimise 

reflections.  An example of this is the PCI bus architecture [12] found in most personal 

computers where, if the 33MHz standard is used, up to 8 adjacent devices are allowed 

or, if the 66MHz standard is used, only 4 to 5 devices. 

For both free-space and wave guided optics, the impedance matching criteria are very 

different since there is no electrical coupling between either end.  This limits noise 
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transfer and ground contention issues as an optical link approximates a common 

component known as an optical isolator [13].  An optical transmission line is considered 

to be impedance matched when the full signal is absorbed without reflection at the 

receiving end.  This can be done by fabricating a section of the transmission medium to 

be exactly one quarter of a wavelength thick or an integer multiple plus one quarter 

[14].  This results in destructive interference of any signal that would have been 

reflected back.  Such optical impedance matching devices are called anti-reflective (AR) 

coatings.  Figure 6 shows a sample optical transmission line. 

Figure 6: Optical Transmission Lines 
Photons carry information from the source laser to destination detector.  Detectors have 
an inherent capacitance Cd. 

The major advantage is that an optical receiver operates in a non-dissipative manner 

[15].  Any photons incident on a photodetector are converted into charge based on the 

device's quantum efficiency η , with 1≈η  feasible, resulting in little excess heat.  

Typical photodetectors generate 0.4 to 0.5 1AW−  of incident light but have an intrinsic 

capacitance Cd which limits speed of operation.  The problem with heat dissipation in 

optical interconnection does not lie in reception but rather in emission.  One of the most 

promising technologies, the vertical cavity surface emitting laser (VCSEL), still does 

not have the necessary power conversion efficiencies to eliminate excess heat: 1.0≈η  

(10%) in commercially available devices (can be 5.0>η  in lab situations).  According 

to the MEL-ARI Optoelectronics Roadmap [17], a standard 64 element VCSEL array 

transmitter operating at 50% duty cycle with a 4mA operating current at 2.4V would 

thus produce excess heat of: 

 ( ) W28.01
2
164 =−×××× ηIV  Equation 8 

Each VCSEL in this illustration has 1.0=η  and produces 1mW of optical output 

power, orders of magnitude greater than the minimum power required for detection.  

This is still considerably less dissipated power than standard transmission lines 

generate, even when using a low efficiency VCSEL such as this.  The difference is that 

excess thermal energy must be dealt with at the transmission end. 
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Optical transmission lines, whether guided or free space, are attenuated far less than 

electrical lines.  Scaling an optical interconnect initially designed for a PCB from a few 

tens of centimetres to kilometres is feasible without significant, if indeed any, increase 

in driving power.  Nor is bandwidth affected, since multiple pulses can be sustained en-

route to the same destination.  The only noticeable and unavoidable effect is increased 

delay between transmission and reception of information. 

As data rates increase the breakeven length for optical communications decreases.  If 

data rates exceed 11Gbs− , optical interconnects require less energy to transfer a single 

bit of information than electronics if transmission line lengths are more than a few 

centimetres long [16].  Nevertheless, there will always be a point at which conversion 

into the optical domain is unnecessary or even wasteful both in terms of transmission 

rates, additional expense incurred and power consumed.  This breakeven point will 

always be application dependent.  However, based on current technological trends, it is 

continually getting shorter. 

2.1.3 On-Chip Interconnect 

Traditionally, any interconnect not in the transmission domain as defined by Equation 2, 

has normally been considered as RC limited.  However, technology has proven 

relentless in decreasing feature size, increasing die size and chip frequency.  

Commercial processor transistor feature sizes are currently 0.18µm and according to 

Intel [18] this progress will not hit any physical limit within the next 5 years.  This has 

certainly increased the significance of RC charging, whose value increases 

exponentially as feature size diminishes, but it has also increased the problems 

associated with on-chip long lines.  Inductance is beginning to become significant again 

in long lines [19] with effects such as overshoot, delay increase and inductive crosstalk. 

Optics is a potential solution to this problem as it would allow distribution of signals 

such as the chip clock frequency in a non-electrically noisy manner.  The author 

believes that on-chip optical long lines would be commonplace if it were not for the fact 

that no technology currently exists which can fabricate an optical emitter on silicon (Si). 

2.1.4 Interconnection Bandwidth Limitations 

As the length and/or density of electrical interconnection increases they begin to suffer 

from increased wire resistance, residual wire capacitance from fringing fields and inter-

wire crosstalk. 
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The maximum bandwidth limit of any electrical system, such as that in Figure 7 and 

regardless of interconnection scheme, can be derived from physical principles and is 

described by: 

Figure 7: Electrical Interconnect 
Cross sectional area A and length l are clearly indicated. 

 20max l
ABB ≈  Equation 9 

Here Bmax is the maximum bandwidth, B0 is a constant of proportionality, A is the 

interconnect's cross-sectional area and l is the interconnect length.  B0 has been 

independently estimated [20] to be approximately 14105×  for electrical systems where 
2lA  is the aspect ratio.  Thus the maximum bandwidth for a 0.1m off-chip electrical 

connection is around 150GHz. 

When optics are used this limit simply does not apply.  In free space, optics propagate 

by definition without a guiding medium and with an attenuation significantly smaller 

than that that seen in electronics.  The parallelism available is estimated to be greater 

than 100,000 channels per cm2, assuming energy density per unit volume does not 

exceed that required for ionisation of any gas present.  Admittedly, the connections 

from data source to VCSEL or detector to data destination still need to be electrical: but 

when this distance is 10 to 100 microns in a flip-chip bonded system, as opposed to a 

few centimetres in an electrical system, the limitation is in practice irrelevant.  The 

number of optical pins that can be driven depends primarily on thermal and real estate 

considerations.  In 2001, 4,096 channels can be driven from 1cm2 with no real obstacle 

to reaching more than 10,000 channels.  CMOS limited rates of 1Mbs200 −  have been 

demonstrated giving a bandwidth of approximately 1Tbs20 − .  However, individual 

devices may routinely be driven at 1Gbs10 −  so a system could essentially handle 
1Tbs000,1 − .  The theoretical limit is actually much higher than this. 

Optical channels can be driven at speeds much greater than electrical channels and take 

considerably less power to drive than pads and wire bonds.  What should be 
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remembered though is that optical interconnection of a chip is an enhancement and does 

not preclude conventional electrical connection as well. 

2.1.5 Optical Architectures 

The use of optical interconnects enables the construction of novel system architectures 

not feasible in electronics.  This section examines the optical properties that can be 

exploited rather than considering types of system architecture. 

Optical information channels can be manipulated in many ways.  Take for example 

Figure 8: 

Figure 8: Manipulating Optical Channels 
This interconnect architecture is used by both neural network demonstrators that are 
outlined in forthcoming chapters.  It illustrates well the various beneficial properties of 
optics.  Different colours are used to represent different channels and are not a reference 
to wavelength. 

A single optical channel can be fanned-out to a few, or indeed many, destinations.  In 

Figure 8(a) there are multiple destination detectors on a two dimensional detector array.  

Each destination detector receives an identical and diminished copy of any information 

on channel 1.  Fan-out is limited by minimum detectable optical power.  As 
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interconnect elements usually have no amplification, all incident power from channel 1 

must be split up amongst the destination detectors.  As fan-out increases, the power 

incident on each detector decreases - presuming channel power remains constant. 

Figure 8(b) shows another channel, which we will refer to as channel 2, incident on a 

slightly different point of the interconnect element.  Note the use of different colours for 

channels 1 and 2 is simply to distinguish them and does not represent a different optical 

frequency.  Channel 2 produces an interconnect pattern identical to that of channel 1 but 

shifted in space by a distance equal to the input channel shift.  Although the 

interconnect pattern is the same, an entirely different set of detectors are now receiving 

the signal. 

Simultaneously applying both channels 1 and 2 gives Figure 8(c).  As light has the 

property that it is non-interacting in free space, the interconnects can cross each other 

without any interference.  Fan-in is also present in this configuration since there are two 

detectors that receive signal from both channels 1 and 2.  This is undesirable in a digital 

information transmission system, but can be used in an analogue one to perform signal 

summation of both channels. 

Figure 9: Overlapping in Multiple Dimensions 
Optics allows use of the same transmission medium in multiple dimensions.  The 
different colours represent different channels and are not a reference to wavelength. 

Overlapping of channels can also be performed in multiple dimensions.  Optics has the 

advantage that as long as nothing is physically blocking a path it can be reused, as 
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shown in Figure 9.  This allows data densities to reach phenomenal values with 

interconnection complexity decades ahead of electronics. 

The nature of optical interconnects also results in scaleable complex architectures.  Such 

an example is a sorting algorithm for parallel computing developed by Stone in 1971 

which has, to this day, not been surpassed as far as a minimal rate of growth of 

computational steps is concerned.  The algorithm is based on work done by Batcher in 

1968 called the bitonic merge-sort, Stone adapting Batcher's work for a shuffle 

exchange network [21]-[22].  This interconnection methodology, as shown in Figure 10, 

is generally known as Stone's perfect shuffle. 

Figure 10: Stone's Perfect Shuffle 
Part (a) shows the desired interconnect and (b) an implementation fabricated using a two 
layer metallisation process. 

Any electronic implementation of this architecture at a large scale is prohibitive as the 

layout area required for interconnect scales quadratically with inputs and outputs.  This 

is typical of the type of problem that limits any scaleable implementation of concurrent 

electronic systems and precisely where optical interconnection becomes beneficial. 

The non-interacting nature of free space optical channels means that they can pass 

through each other to form any desired interconnection topology without cross-talk.  

Complex interconnects thus become relatively simple to implement with minimal skew 

as large wire length variation can be avoided.  Figure 11 shows an optical 

implementation of Stone's perfect shuffle. 
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Figure 11: Optical Implementation of Stone's Perfect Shuffle 
Shadow images indicate 2D extension of this architecture. 

This example only uses one dimension for optical interconnection.  The second 

dimension could be used to add either additional perfect shuffle elements, as shown, or 

to reduce maximum beam deflection by optimising interconnection towards a square 

array. 

The architectures examined so far have extolled the advantages of what are referred to 

as free space systems.  Such systems are usually short range architectures providing 

complex interconnection.  Longer range systems require a guiding medium through 

which to travel, generally referred to as a waveguide.  Commonly a fibre is used, but 

polymers and/or silicates are encroaching, providing the optical equivalent of printed 

circuit board tracks [23].  Such guiding almost always results in the traversal of corners 

with total internal reflection ensuring that photons do not leave the waveguide.  

Unfortunately, this does not preserve spatial coherence so only the total amount of 

incident optical power reaches the destination with no remaining relevance to initial 

spatial position. 

Wavelength division multiplexing (WDM) uses different wavelengths of light to carry 

multiple channels on a single waveguide as shown in Figure 12.  At the destination, 

these wavelengths are extracted and guided to the correct destination detector.  Today's 
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WDM systems use individual channel data rates of up to 1Gbs10 −  (OC–192) with just 

over 100 channels per waveguide at the high end.  However, systems such as Essex 

Corp's Hyperfine WDM [24] are currently reaching production prototype stage and 

show the potential to carry 4,000 channels on a single waveguide with a spacing of 

1GHz between carrier frequencies in the optical spectrum.  This would result in data 

rates of 1Tbs40 −  but this is still nowhere near the theoretical optical transmission limit. 

Figure 12: Wavelength Division Multiplexing 
Three different wavelengths of light multiplexed down a single waveguide.  Fibre not 
shown to scale. 

Another technique to multiplex optical signals on a single waveguide is to polarise the 

light.  Unfortunately, it is not as effective as WDM since reliable differentiation is 

currently only practical between two polarisations of light.  A common component 

known as a polarising beam splitter (PBS) can be used to extract the signal as it only 

reflects light with a specific polarisation.  However, polarisation state is not particularly 

stable in a waveguide and unless a specifically designed fibre with an elliptical cross 

section is used then polarisation will only be maintained for a few metres.  This 

technique is problematic as light can also have multiple polarisation components 

simultaneously, for example circular or elliptical polarisation, giving it limited 

commercial interest. 

2.1.6 Bandwidth Predictions 

In 1965 Gordon Moore [25] observed that the number of transistors on an integrated 

circuit approximately doubled every eighteen months.  His observation has held true to 

this day and is now commonly known as Moore's law.  Prediction of future trends in 

component technologies based on recent research and development helps engineers plan 

for future designs.  One respected group which makes such predictions for silicon chips 
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is the Semiconductor Industry Association (SIA) and every year it publishes a roadmap 

[26], an extract of which can be seen in Table 1. 

Year 1999 2002 2005 2008 2011 2014 

Process Size (nm) 180 130 100 70 50 35 

Chip Size (mm2) 450 509 622 713 817 937 

On-Chip Clock (GHz) 1.2 1.6 2.0 2.5 3.0 3.6 

I/O Bus Speed (MHz)† 480 885 1,035 1,285 1,540 1,800 

I/O Pads†† 368 464 584 736 927 1,167 

Off-Chip Data Rate (Gbs-1) 177 410 604 946 1,428 2,100 

Table 1: SIA Roadmap 
†Chip to board speed for high performance off-chip buses.  ††Number of chip package 
pads. 

Examination shows that chip process size is continuing to decrease as overall chip area 

and clock rates increase.  This leads to an overall growth in transistor density of 3.1×  

[18] per year, a trend which is not reflected by off-chip data rates and has not been for 

some time.  Clever caching techniques and the addition of metal interconnect layers 

have reduced the impact of this problem, but we are reaching a point where this 

inconsistency cannot be circumvented any longer.  Even transmitting a signal across a 

chip these days can be a daunting task. 

Year 1997 2002 2007 

VCSEL†+driver pitch (µm) 125 80 60 

Chip Size (mm2) 6.25 9 16 

Optical Channels/Chip 256 1,024 4,096 

VCSEL† Data Rate (Gbs-1) 0.6 1 2 

I/O Bus Width 256 1,024 4,096 

Off-Chip Data Rate (Gbs-1) 154 1,024 8,192 

Table 2: MEL-ARI Opto Roadmap 
†Vertical cavity surface emitting laser.  An optical emitter. 
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A similar institution also exists for optoelectronics called MEL-ARI [17].  Table 2 is an 

extract from their roadmap showing the predicted growth of optical interconnect 

technologies. 

Even when both of these roadmaps were published, optoelectronic off-chip bandwidth 

had exceeded electronic.  As time progresses, the slow expected rise of electronic 

bandwidth is significantly outpaced by optoelectronics to the point where in 2007 

optoelectronics has off-chip data rates one order of magnitude greater than electronics.  

Looking further into the future of electronics, in fact as far as the SIA go, we can see 

that electronics will not even have one quarter of the data rates in 2014 that 

optoelectronics is predicted to have in 2007. 

2.1.7 Optical Alignment 

The drawback with any free space optical system is alignment: all components must 

have a particular tolerance which is directly related to cost.  These tolerances need to 

compensate for a variety of effects such as thermal expansion/contraction, optical 

aberrations, long term creep and environmental conditions such as mechanical vibration 

from cooling fans.  One way round these problems is to use adaptive optics (AO) [27]-

[28] which perform measurement and correction of focusing and positional error in real 

time.  The commercial viability of such techniques is easily seen by looking at a CD 

player [29], generally regarded as a disposable piece of machinery, which maintains 

focus and position of a 1µm light spot in real time on a rapidly rotating optical disk. 

2.1.8 Conclusion 

Free space optical interconnects appear to offer tremendous advantages over electronics: 

they are attenuated far less than electrical signals, offer transmission lengths of the order 

of metres without significant driving powers, simplify complex interconnection 

structures and present levels of raw data throughput simply unattainable in electronics.  

Their very nature implies high parallelism around any implemented machine, such as to 

and from memory and/or peripherals.  However, there are still many engineering issues 

to be confronted before such interconnects can be routinely deployed. 

Perhaps optoelectronics will not reach the levels stated by MEL-ARI as quickly as 

predicted.  Perhaps a new technology will emerge that supersedes optoelectronics.  But 

with electronics rapidly approaching its physical boundaries, there is no option other 

than to find another method of enhancement.  Optoelectronics is the next logical step 
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and provides orders of magnitude performance increases with ease of integration into 

existing technologies.  Whether it likes it or not, electronics is going to be dragged, 

kicking and screaming, into the optoelectronic era. 

2.2 Networks and Switching Theory 

Technological advances are resulting in the convergence of the three previously distinct 

worlds of telephone networks, data networks and multiprocessor interconnection 

architectures.  This section examines the evolution of today's networks from their initial 

emergence as the public telephone system and the complexity now involved in packet 

switched networks.  It concludes with a brief look at architectures suited to packet 

switching, defining metrics and considering implementation issues. 

2.2.1 Public Switched Telephone Network (PSTN) 

The roots of networks and switching theory lie with the invention of the telephone.  A 

single telephone is of no use unless there is a second telephone with which to connect.  

Construct more telephones and issues such as how do you connect one subscriber's 

telephone to another begin to arise.  Figure 13 examines this switching problem. 

Figure 13: Local Network 
Direct connection of subscribers requires significantly more lines than centralised 
connection, especially at higher orders. 

Connecting every subscriber directly to every other in a network consisting of nt 

telephones would require ldc lines, as defined by Equation 10: 
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l  Equation 10 
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Therefore, the number of lines required increases quadratically with the number of 

subscribers.  As network size continues to grow, direct connection will result in lines 

that are wasteful and may never even be used.  This problem can be overcome by 

connecting every telephone within the local geographic area to a central point called a 

local exchange, as shown in Figure 13(b), thus greatly reducing the number of lines 

required to lcc=nt.  However, such an architecture requires a switching mechanism at the 

local exchange. 

For the same reason that subscribers are not fully interconnected, neither are local 

exchanges.  Indeed they are part of a complex hierarchical structure [30] as shown in 

Figure 14.  There are three standards used to name each level of this hierarchy: one for 

the USA, one for the UK and one international standard ITU-T [31] (formerly CCITT).  

The latter will be used here. 

Figure 14: Hierarchical Routing System 
Dashed lines indicate dedicated connections due to high demand between two particular 
nodes.  Dotted lines indicate connections with no destination shown. 

The whole point of the hierarchical architecture is to concentrate traffic from lower 

levels at the upper levels by multiplexing information onto higher data rate channels.  

This reduces overall transmission cost but results in expensive switching systems at the 

upper levels.  The number of interconnections, exchanges and centres is also an 

important consideration and a network provider will install sufficient capacity to handle 

what they deem to be maximum load.  Spare capacity does not generate revenue and is 

therefore a needless expense.  The efficient use of all available network bandwidth is 

consequently a top priority. 

The bandwidth usage of a channel is normally defined mathematically in the unit 

Erlang (E) [32], named after the Danish pioneer of teletraffic theory.  If the channel is 
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continuously used for one hour it is said to have carried one Erlang of traffic, 75% 

usage would be 0.75E.  Note that the USA uses a different unit of measurement called 

hundred call seconds per hour (CCS) where 1E=36CCS.  To allow a network operator 

to determine appropriate bandwidth provision and ensure user satisfaction given 

economic constraints, a quality of service (QoS) [33] metric is used to describe the 

network.  QoS defines the probability that any attempt to make a call by a subscriber 

during the busy period will be rejected by the network due to insufficient bandwidth.  

For example, a QoS of 0.02 means that 1 in every 50 calls placed at peak times would 

fail. 

2.2.2 Circuit and Packet Switched Networks 

Making a call using the public switched telephone network consists of three stages.  

First, a route is found from one subscriber to the other and bandwidth is allocated 

through the network.  This process is called call setup and can take up to 10 seconds if 

mechanical exchanges and switching centres have to be traversed.  Second, the call 

takes place and conversational traffic is transmitted.  Third, the call is cleared down and 

bandwidth returned to the system.  This type of network behaviour is called circuit 

switching as the circuit remains dedicated to a call for its entire duration, even when 

there are periods of inactivity between both users. 

Although circuit switching is suited to telephone networks, data networks have a 

different set of requirements.  As information transfer need not be continuous, a 

physical circuit does not have to be established between source and destination.  This 

has resulted in the development of packet switched networks which were initially used 

in local area networks (LANs).  Figure 15 compares circuit switching to packet 

switching. 

Circuit switched networks transmit information within periodic time frames, a fraction 

of which is dedicated to a particular circuit allowing the link to handle up to a fixed 

number of circuits simultaneously.  Spare capacity in any frame can only be used by a 

new circuit, and not by one that is already present, thus creating idle slots that have 

available but untapped bandwidth.  Another disadvantage of circuit switching is that 

circuit inactivity, or unused slots, result in the allocation of bandwidth to a circuit that is 

not currently carrying information.  Both of these situations waste bandwidth but are 

unavoidable due to the nature of the architecture. 
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Figure 15: Circuit and Packet Switching 
A letter indicates that a channel (A to E) has reserved a particular timeslot.  A box 
indicates that data is being transmitted and a line that no information is present. 

Packet switching differs from circuit switching in that bandwidth is allocated on 

demand.  Information that travels on a packet switched network is broken up into 

chunks and transmitted whenever there is free bandwidth.  Therefore, rather than 

decline a connection as a circuit switched solution would do, a packet switched network 

stores the packet and transmits it when a slot becomes available.  This results in greater 

link efficiency at peak times, as shown in Figure 16, but unfortunately also in 

unpredictable packet delays.  Although not a problem in computer networks, a user 

would not put up with a telephone call that keeps breaking up due to packets being 

delayed. 

Figure 16: Link Traffic Carried 
The red dashed line indicates traffic offered to the link.  The circuit switched system 
simply routes as much as possible ignoring additional traffic.  The packet switched 
system buffers excess packets and transmits them on a first in first out basis when link 
load goes below 1 Erlang. 

As a packet switched network does not create a circuit from point to point and accepts 

packets immediately, without guaranteeing a path to the recipient, it is not possible to 

quantify quality of service and traffic flow in the same way as for circuit switched 

networks.  The analysis of packet switched networks is normally statistical and 

quantified by the mean packet delay across the network.  However, at peak times this 
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delay could theoretically be excessive.  In practice, the finite capacity of network 

buffers prevents any more packets from being accepted thus capping theoretical delay 

limits. 

A sample packet switched architecture is shown in Figure 17.  It consists of a number of 

interconnected packet switches (PS) that can be connected directly to a computer system 

or LAN. 

Figure 17: Packet Switched Network Architecture 
Packet switched networks can have local area networks directly attached as they also 
operate by transmitting packets.  A bridge or gateway may be required depending on 
LAN architecture. 

The obvious difference between this type of network and the public switched telephone 

network is that there is no predefined architecture or hierarchy.  Links are usually 

installed between packet switches based on estimated demand for the link.  Tolerance to 

failed or overloaded packet switches is high as the system simply transmits on another 

link.  In a hierarchical system, a failed node or link used to capacity could isolate large 

segments of the network. 

When a packet switch receives a packet it stores it and then inspects the packet's header.  

This header contains sequencing information and may also detail the packet's 

destination.  Each packet switch has a routing table that allows it to decode the packet's 



Optical Interconnects and Networks 

24 

header and choose the correct link(s) to retransmit it on.  Figure 17 shows a piece of 

data that has been broken into three segments (D1, D2 and D3) and transmitted onto the 

packet switched network.  Due to high link traffic, the packets are transmitted via three 

different routes from PS1 to PS3.  Assuming that the delays incurred through each link 

and packet switch are equal, the packets will arrive out of sequence.  Sequencing 

information contained within the packet header may allow reassembly of the 

information contained in the right order. 

Packet switched networks are also able to support voice and video using a method 

called virtual circuit switching (VCS) [34].  In the same way that the public telephone 

network sets up a call, a virtual circuit is created between source and destination nodes 

through a specific set of nodes that does not change as long as the circuit remains active.  

Depending on implementation, the packet switched network will reserve sufficient 

bandwidth for the virtual circuit.  This circuit is assigned a special virtual channel 

identifier (VCI) in the routing table of each packet switch traversed.  After that only the 

VCI needs to be specified for a packet and information will automatically be transmitted 

to the correct destination, the virtual circuit ensuring they arrive in the order they were 

transmitted.  Figure 17 shows a virtual circuit VC1 set up between nodes PS1 and PS6.  

Once transmission is complete, the virtual circuit is cleared down and resources are 

returned to the system. 

2.2.3 Packet Switch Architectures 

The task of a packet switch, to switch an input line to a particular output line, belies its 

complexity.  Modern protocols require data to be transmitted seamlessly alongside real 

time information such as voice or video whose transmission has been prioritised using 

virtual circuits.  Design decisions therefore prove critical and, if carelessly made, impact 

not only on the switches' performance but on that of the entire network.  Figure 18 

shows the important functional blocks in a packet switch. 

Packets are received from transmission lines, not necessarily of the same data rate, and 

buffered temporarily at the packet switch input.  Their destination addresses are 

extracted and passed to the control and routing unit which evaluates all information at 

its disposal and selects the packets to be transmitted.  The control and routing unit then 

reconfigures the switch fabric if necessary and allows packet transmission to proceed.  

The output interface receives the routed packets, buffers them and retransmits them 

when possible.  Again, output transmission lines do not need to be of the same data rate.  
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It is essential to minimise the delay incurred at every stage as a packet may travel 

through tens of switches before reaching its destination.  If delay is not minimised, 

traffic such as voice could be subject to disconcerting delays as are evident in long 

distance communications. 

Figure 18: Packet Switch Architecture Overview 
Packet switch functional blocks. 

Packet switch fabrics [35] can and have been implemented in countless ways.  The 

simplest of switching fabrics is called the crossbar switch and can be seen in Figure 19.  

The crossbar can achieve a connection from any input to any output by simply closing a 

single crosspoint switch.  This results in high aggregate bandwidths as the datapath only 

needs to traverse a single switching stage.  This type of switch is defined as internally 

non-blocking since it is always possible to connect a free input line to a free output line.  

However, the ability to choose any datapath also results in the requirement for complex 

control and routing algorithms. 
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Figure 19: Crossbar Switch 
Closing a crosspoint will connect an input line to the appropriate output line. 

Unfortunately, the crossbar switch architecture has an N2 growth function making it 

uneconomical at larger switch sizes.  This problem was addressed by the arrangement of 

a structured network of smaller switches [36]-[37] in an attempt to find algorithms that 

could perform the same task using fewer crosspoints.  This work resulted in the 

multistage interconnection network (MIN) of which the Banyan network [38] shown in 

Figure 20 is an example.  However, MIN architectures incur a delay for each layer that a 

packet must traverse. 

Figure 20: Banyan Network - A Multistage Interconnection Network 
Each node is a 2×2 crossbar switch.  A sample path routing a packet from 110 to 100 is 
shown.  An internally blocked path from 011 to 101 is also shown.  Numbers are in 
binary. 



Optical Interconnects and Networks 

27 

There are many kinds of Banyan network that can be classified into various sub-groups 

[39].  Unlike the example, they do not need to use the same size switch throughout each 

layer nor only be connected to adjacent layers.  These types of networks are classified as 

self-routing networks since the packet's header contains all the information required to 

route it through the switch fabric.  Figure 20 traces two paths through the switch.  The 

first packet is input on channel 101 (binary) and is destined for output channel 100 

(binary).  The binary values are important as they are used to route a packet to its 

destination.  The first node the packet encounters in layer 1 examines the most 

significant bit (MSB) of the destination address and routes it to the correct port, in this 

case down to 1.  The node in the next layer examines the next most significant bit 

continuing on through layers and bits until the least significant bit (LSB) routes the 

packet out on the correct channel.  Unfortunately, this network suffers from a problem 

that classifies it as internally blocking.  Consider a second packet on input 011 and 

requesting to be output to 101.  Transmission of the packet is blocked internally as it 

requires the use of a connection already in use by the previous packet even through the 

destination is different.  Techniques exist for reducing and avoiding internal blocking 

using randomisation and sorting algorithms [40].  Unfortunately, these techniques 

require additional nodes which will nullify any reduction in switch elements that a MIN 

network may bring. 

Comparison of Banyan and crossbar switches shows that for 8 inputs and outputs the 

crossbar requires 64 crosspoints whereas the Banyan requires 48.  This illustrates that 

MIN networks can perform the same task as a crossbar but use fewer crosspoints.  

Unfortunately, improved scalability and self routing is offset by the probability of 

internal blocking and increased interconnection complexity [41]. 

The Banyan shown is an example of a delta network [42].  Delta networks encompass 

many of the better known multistage interconnection networks.  A delta-b network is a 

delta network comprised of b×b switching elements.  The number of input and output 

channels is N=bk where k is the number of layers the network has each with bN  nodes.  

The network in Figure 20 is a delta-2 network where k=3 and N=8.  The sizes of these 

networks scale at a rate of NlogbN [42]-[43] making them suited to higher order 

applications than the crossbar switch.  Figure 21 shows some common delta network 

architectures. 
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Figure 21: Delta Networks 
Sample delta-2 network architectures. 

Buffering strategies [44] exist to improve the QoS provided by a switch.  If no buffering 

existed and two packets were contending for a single output, then one of the packets 

would be lost.  Buffering normally exists at either switch input or output.  It is either a 

dedicated buffer for each line or a shared buffer into which all packets are placed.  

Although a shared buffer can provide the same probability of blocking as dedicated 

buffers whose total size is far greater, it needs a bandwidth equal to the sum of all input 

or output speeds, whichever is higher. 

However, buffering strategies also exist within the switch architecture itself, as shown 

in Figure 22. 

Figure 22: Switch Internal Buffering 
Internal buffering allows distributed control in a crossbar switch and eases internal 
blocking in a MIN switch. 

A crossbar switch crosspoint can be buffered internally with a filter selecting packets 

for its associated output line and buffering them before the crosspoint.  An arbiter then 

decides which packet should be output first, distributing and simplifying the control 

function to the selection of a packet for an output line rather than the selection of a set 

of packets across the entire crossbar switch.  As MIN architectures are internally 

blocking, buffering has a more pronounced effect.  Integrating input buffers into a node 

will reduce the effect of internal blocking in a switch by storing packets until the 

required output is free. 
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2.2.4 Conclusion 

The last decade has seen the development of packet switched broadband architectures 

that can cope with voice, data and video traffic on a single network.  One such 

architecture is asynchronous transfer mode (ATM) [45] which focuses strongly on 

traffic management issues.  The complete transition to such architectures is still a long 

way off. 

Proliferation of network services and continuing technological developments have 

driven transmission line demand and capacity respectively in recent years.  Traffic on 

the Internet backbone is doubling every three to six months [41] and optical 

interconnects in the form of wavelength division multiplexing over fibre have increased 

available capacity.  However, packet switch architectures have not scaled accordingly.  

Unless new technologies are developed soon they will become a restricting factor in the 

convergence of telecommunication services onto a single, packet switched and 

broadband architecture. 
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3 Optical Technologies and Integration 

This chapter examines the device technologies that enable optoelectronic 

interconnection, integration of these devices and the architectures in which they can be 

used.  Attention will be paid specifically to 2D arrays of devices that allow spatial 

parallelism and therefore the creation of high-density optical interconnects or buses.  It 

is essential to point out that this section is by no means exhaustive.  It will illustrate 

some of today's key technologies paying particular attention to the types of emitter, 

detector and interconnect used to construct the demonstrators in section 5. 

3.1 Semiconductor Theory 

This section examines what a semiconductor is and the properties that allow it to be 

used to create optoelectronic devices.  Differentiation is made between direct and 

indirect bandgap semiconductors thereby explaining the limited use of silicon (Si) and 

certain other materials in optoelectronic devices. 

Unlike the widely spaced and distinct energy levels of a single atom, a crystal lattice has 

a large amount of similarly spaced energy levels known as bands.  Figure 23 shows how 

these bands are configured in insulators, conductors and semiconductors. 

Figure 23: Energy Levels in a Lattice 
Specific bands of energy levels exist in a crystal lattice which an electron can occupy.  
Red indicates electrons, blue indicates holes. 
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The conduction band describes delocalised electrons that are not associated with any 

specific atom and the valence band describes the outer electron layer which is involved 

in lattice bonding.  The filled bands are the inner electrons of the atom that are not 

involved in bonding.  An electron can have any energy level within a band but cannot 

take an energy level outside it. 

An insulator, as shown in Figure 23(a), has a valence band completely filled with 

electrons and an energy gap between valence and conduction bands of typically >4eV 

[46].  The conduction band is empty and it is hard to alter the material's resistivity by 

either doping or any kind of external field.  A conductor, as shown in Figure 23(b), has 

a partially filled valence band and an empty conduction band.  Its resistivity is typically 

low and again it is hard to alter the resistivity by doping or through an external field.  In 

a semiconductor, Figure 23(c), the gap between valence and conduction bands is 

relatively small, usually 1 or 2eV.  At extremely low temperatures, a pure 

semiconductor will approximate an insulator as the valence band will be full and the 

conduction band empty.  As temperatures increase, a semiconductor's small bandgap 

allows thermal energy kT to excite electrons into the conduction band.  Unlike 

conductors and insulators, the resistivity of a semiconductor can be altered by doping or 

by applying an external field. 

An electron becomes more energetic if it receives enough energy to move into a vacant 

state either in its present band or in a higher one.  In an insulator, the lower states are 

completely filled and a significant amount of energy is required to get electrons into the 

conduction band.  However, in a conductor there are many vacant states, including some 

in the valence band, so not much energy is needed to move an electron into one of these 

states thereby allowing it to participate in a current.  In a semiconductor, controlled 

impurities are used to add charge carriers to the conduction band.  This allows 

resistivity to be altered by up to 10 orders of magnitude [46].  The resistivity ρ  of a 

material [47] is defined by: 

 
ctne

mρ 2=  Equation 11 

where m is the mass of an electron, n is the number of charge carriers per m3, e is the 

charge on an electron and tc the mean time between charge carrier collisions.  The 

values of m and e are constant and can therefore not be altered.  In a metal, any increase 

in temperature will not appreciably effect the number of charge carriers.  However, the 
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rate at which collisions occur will increase resulting in a smaller mean time between 

carrier collisions tc.  Therefore, the overall resistance of a metal increases with 

temperature.  This situation is somewhat different in a semiconductor.  Although the 

mean time between carrier collisions is analogous to that of a metal, this variable is 

more than offset by an increase in the number of charge carriers that become available 

(since kTEg ≈ ) resulting in an overall decrease in resistivity with temperature rise.  Put 

succinctly, high temperature applications using semiconductors will require a larger 

bandgap. 

To improve current conduction in a semiconductor, dopants are added at rates of usually 

less than 1 part per million.  The elements added must have a different number of 

electrons than the host.  An intrinsic semiconductor is the undoped sample.  Take for 

example an intrinsic group IV crystal such as silicon (Si).  Adding a group III dopant to 

the lattice such as gallium (Ga) will capture one electron from the crystal, in which case 

it is called an acceptor.  This missing electron creates a mobile hole, considered to be a 

positive charge, resulting in a positive or p-type material.  Another electron can occupy 

the hole, thus creating another hole somewhere else and causing the positive charge 

carrier to move around.  If a group V dopant such as antimony (Sb) is added to an Si 

lattice it donates an electron and is therefore called a donor.  The additional electron 

creates a negative or n-type material.  The holes in a p-type region or electrons in an n-

type region are called the majority carriers.  Minority carriers are holes in the n-type 

region or electrons in the p-type region. 

A semiconductor is capable of both absorbing and emitting photons.  Without this 

behaviour it would not be possible to create semiconductor emitters or detectors.  

Before we proceed any further though, it is important to remember that there are two 

types of bandgap as shown in Figure 24 - direct and indirect [48].  Note that these are 

E-k diagrams where E represents energy and k momentum wave vector. 

First let us consider the absorption of a photon in a direct bandgap material.  A photon 

will be absorbed if its energy is approximately equal to, but not less than, the bandgap 

energy Eg.  If the photon energy is significantly smaller than the bandgap then the 

material appears transparent and the photon will pass through unhindered.  If absorbed, 

the photon will excite an electron by giving it the energy it carries, transferring it from 

the valence band to the conduction band and allowing it to participate in any current.  

The amount of energy a photon imparts is equivalent to the amount it carries: 
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 ω
λ

hcE h==  Equation 12 

where h is the Planck constant Js1063.6 34−× , c the speed of light 18 ms103 −× , λ  the 

wavelength of the photon and h  the standard notation for π2h .  As a photon has no 

mass there will be no change in momentum and therefore no change on the k axis.  Thus 

the transition is vertical only. 

Figure 24: Direct and Indirect Bandgaps 
Direct bandgap materials can easily absorb or emit photons.  Indirect bandgap materials 
require both a photon and phonon for absorption and emission which decreases the 
probability that such an event will occur. 

Emission occurs when there is an excited electron in the conduction band.  Electrons are 

eager to lose any energy they carry and return to the lowest energy state either in their 

current band or the next.  Inter-band transitions normally result in the emission of a 

photon, called spontaneous emission, as shown in Figure 24(b) where energy that the 

electron had is imparted to the photon. 



Optical Technologies and Integration 

34 

Indirect bandgap materials are different in that the maximum valence band energy E and 

the minimum conduction band energy do not occur at the same wave vector k.  

Therefore, the interaction of a second particle called a phonon is required.  A phonon is 

defined as a quantum of crystal lattice vibrational energy [49]-[50] and has a 

momentum p of: 

 khkp h=
π

=
2

 Equation 13 

where h is the Planck constant Js1063.6 34−× , k is the wave vector and h  the standard 

notation for π2h .  A phonon also carries a small amount of energy E.  Note that this 

momentum cannot be imparted by another photon as photons do not have any mass. 

As both a phonon and photon of the correct energy are required, the probability that 

absorption or emission will occur is greatly reduced as can be seen in Figure 24(c) and 

(d).  Emission is especially problematic as non-radiative recombination is dominant, 

such as Auger recombination [51], which returns the excited electron to the valence 

band by emission of multiple phonons before radiative recombination can emit a 

photon.  This directly effects the quantum efficiencies η  of devices made from indirect 

bandgap materials.  For example, a typical indirect bandgap device made from silicon 

carbide (SiC) has a quantum efficiency of around 0002.0=η , whereas a direct bandgap 

device made from gallium nitride (GaN) is around 12.0=η  [52]. 

Figure 25: Bandgap Energies of Elements and Binary Compound Semiconductors 
Bandgap energies and corresponding photon wavelengths for a variety of elements and 
binary compound semiconductors.  Combinations of compounds give access to 
intermediate bandgaps.  For example, InAsxP1-x will have a bandgap of between 0.35eV 
and 1.34eV depending on the value of x.  Data taken from [51]-[53]. 
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The advantage of creating optoelectronic devices using semiconductors is that the 

component is solid state.  Such components are compact, energy efficient, cost effective 

and relatively easy to produce in large quantities.  Perhaps the most important 

characteristic is that semiconductors react quickly to a change in drive current, enabling 

modulation at comparatively high frequencies. 

3.2 Emitters 

A component is considered to be an emitter when photons are produced within the 

device.  The wavelength of the photons is material dependent, a selection being shown 

in Figure 25.  This section examines three semiconductor based optical emitters 

considering their construction, uses, limitations and modes of operation. 

The first device which we will consider is the light emitting diode (LED), as it was the 

first to be discovered.  In 1907, Round noticed photoluminescence in Carborundum 

(SiC) [54] when a current was applied essentially creating a Schottky device [48].  

Today's LEDs and indeed most if not all optoelectronic devices rely on the p-n junction 

[55].  The junction shown here is classified as a homojunction structure as both sides are 

made of the same material with the same bandgap even though their electrical 

characteristics are different. 

Figure 26: Near Infrared Light Emitting Diode (LED) 
Typical NIR-LED structure.  Photon emission is spontaneous and not in any particular 
direction.  Doping behaviour of Si is controlled by the temperature of epitaxial growth 
[56].  Temperatures of above 820ºC form an n-type layer and below form a p-type layer.  
Patterned n-contact ensures minimum absorption of incident radiation by contact.  Layers 
not to scale. 

The first commercial LEDs became available in 1969 and were quickly incorporated as 

visual indicators on a wide variety of products.  Production techniques improved with 

consequent increases in not only yield but also device efficiency.  Today's LEDs are 
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almost in a position to take over from incandescent filament bulbs and fluorescent tubes 

as they provide a power efficient "cold" light.  Not only that, but their lifetimes are an 

order of magnitude longer with graceful degradation rather than instantly burning out.  

The demand for LEDs has continued to grow since their inception and reached the 

$1billion mark in 2001.  However, LEDs for communications purposes have been 

superseded by laser diodes.  This is because the LED is highly divergent and slow by 

comparison.  LEDs rely on spontaneous emission of light on application of a current to 

modulate their optical output.  Unfortunately, spontaneous emission is a slow process 

and is not normally faster than 1ns [51]-[52], limiting throughput on an LED 

communications channel to around 100MHz. 

The laser diode (LD) has become a fundamental building block in many of today's 

communication and storage systems.  Again, it is a p-n junction device, but beam 

divergence is usually a few degrees with potential bandwidths in excess of 20Ghz [57].  

This is because laser based devices use stimulated rather than spontaneous emission to 

produce light, thus the name light amplification by stimulated emission of radiation 

(LASER).  Nevertheless, spontaneous emission and absorption will still occur, however 

probability remains heavily on stimulated emission’s side. 

A laser diode works by exciting the electron population in the active region to an upper 

energy band by application of a current.  When the majority of electrons are excited, the 

population is said to be inverted, a state which is inherently unstable.  If a photon passes 

through a medium with an inverted population, it can stimulate an electron in the upper 

energy band return to the lower one emitting another photon which is identical in every 

way to the first.  Partially mirrored surfaces on the device, due to its refractive index, 

cause internal reflection returning photons back through the cavity and stimulating the 

emission of further identical photons in a cascade like manner.  This causes light 

amplification within the resonant cavity, presuming there is sufficient current to sustain 

the inverted population, and is the basis of laser action. 

Laser action was discovered almost simultaneously by four research groups in 1962 [2]-

[5].  However, all of these groups created homojunction lasers which required high 

current densities and could not provide continuous wave (CW) operation at room 

temperature.  One year later it was postulated that a heterojunction design could 

considerably improve semiconductor lasers [58], a theory which would later award 

Alferov and Kroemer the Nobel prize.  Unfortunately, the technology to fabricate such 
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structures would not be available until 1969.  It took just one year before room 

temperature continuous wave operation was demonstrated in 1970 [59]-[60].  Figure 27 

shows the construction of a typical double heterojunction (DH) laser diode. 

Figure 27: Stripe Laser Diode (LD) 
Optical gain is supported in the active region (a).  Polishing opposite ends (c) and leaving 
the remaining sides rough favours laser oscillation along this axis.  Below laser threshold 
(d), spontaneous emission is dominant whereas stimulated emission is dominant above.  
Layers not to scale. 

A heterojunction is a junction between two different materials, in this case GaAlAs and 

GaAs.  Due to the bandgap differences at the two junctions, there is greater confinement 

of electrons and holes to the active region.  In addition, the larger refractive index of 

GaAs also aids confinement of radiation to the active region.  Most stripe diode lasers 

have an elliptical beam output profile, however this is not regarded as a problem since 

not only is the output stable but it is easier to couple into an optical fibre.  For further 

information on laser diodes see [48], [57], [61]-[63]. 

The problem with creating laser diodes is dicing.  A single substrate can contain 

hundreds of devices each being an edge emitting device.  Thus the substrate must be 
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carefully cut using a precision diamond saw and the appropriate edges of each device 

polished.  Considering that these devices are usually measured in microns, this can be 

an awkward and time consuming process.  This problem is addressed by the third and 

final device that we will consider in this section, the vertical cavity surface emitting 

laser (VCSEL). 

The VCSEL, as shown in Figure 28, emits perpendicular to the surface of the chip, 

simplifying fabrication and lowering production costs.  Since there is no longer any 

need for dicing, smaller structures can be created that consume less power. 

Figure 28: Vertical Cavity Surface Emitting Laser (VCSEL) 
Distributed Bragg reflectors (DBR) act as mirrors in a VCSEL.  Emission can either be 
through the top of the VCSEL, as shown, or through the substrate assuming it is 
transparent at emission wavelength or that a well has been etched.  Layers not to scale. 

The first VCSEL was built in 1979 [64].  It lased at a temperature of 77K, had a high 

threshold current and used metal mirrors which had substantial absorption.  The 

construction of efficient mirrors was to remain a problem until 1989 when advances in 
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epitaxial growth enabled the construction of remarkably effective distributed Bragg 

reflectors (DBRs) and subsequently the first room temperature CW VCSEL [65].  

DBRs are created by fabricating quarter wavelength 4λ  thick layers of alternating high 

and low refractive index substances such as GaxAl1-xAs and GayAl1-yAs respectively.  

Well fabricated layers can have reflectivities approaching 99% [66], however poor 

fabrication results in poor reflectivity and prevents the VCSEL from lasing.  The cavity 

in a VCSEL is fabricated such that a standing wave is formed between upper and lower 

DBRs, where the maximum is centred on the active region.  Centring is ensured by 

adding spacers so that the cavity length is an integer multiple of wavelengths.  Emission 

from the top of the VCSEL is forced by leaving the upper interface open to air as shown 

in Figure 28.  To force emission from the bottom surface, the top layer is fully 

metallised with the contact layer.  Both configurations have GaAs as the lower DBR 

interface. 

A now common VCSEL enhancement called oxide confinement uses implantation of 

heavy ions, usually fluorine (F) or oxygen (O), to form a circular aperture in the upper 

Bragg reflector.  This channels the carriers into the active region resulting in increased 

performance from the VCSEL.  Unfortunately, ion-implantation is, by its very nature, 

imprecise.  This results in crystal damage, creating fuzzy boundaries around the aperture 

in the active region with consequent increases in diffraction and divergence.  For more 

information on oxide confined VCSEL arrays refer to [66]-[68]. 

VCSELs have already taken over from LDs at wavelengths around 850nm, however 

manufacturing techniques have so far limited their production in the communications 

wavelength window due to poor DBR reflectivities.  This is about to change as 

improved epitaxial processes are approaching commercial viability which would allow 

efficient DBR construction for 1.3µm wavelengths [69]. 

VCSELs are ideal for high density optical interconnects, however array sizes are 

currently limited to 8×8 or 16×16 devices due to poor yield.  Since there is no 

theoretical limit involved, investment in process technology will allow larger arrays to 

be fabricated with each VCSEL providing GHz bandwidths. 

3.3 Modulators 

Modulators differ from emitters in that they transfer information onto an incident 

optical channel either by changing transmission, reflection or re-routing the beam.  
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Figure 29 shows the construction of a typical multiple quantum well (MQW) modulator.  

Depending on the potential difference across the active region, this modulator will 

either absorb any input signal or reflect it along the modulated output path.  This device 

is an example of an absorptive modulator. 

Figure 29: Multiple Quantum Well (MQW) Modulator 
The quantum well region modulates information onto an incident optical beam.  The 
substrate is transparent at operational wavelength ~1.04µm.  Lattice constants of 
GaAs/AlGaAs are fairly closely matched, however a graded composition buffer eases 
lattice tension for the transition to indium (In).  Ratios of elements are not included.  For 
more information on the device pictured here see [70].  Layers not to scale. 

Absorptive modulators can be created by using one of two effects, either the Franz-

Keldysh effect (FKE) [71]-[72] or the quantum confined Stark effect (QCSE) [73].  The 

Franz-Keldysh effect states that in the presence of a field in bulk semiconductor, the 

wavefunctions of electrons and holes tunnel into the bandgap region allowing limited 

absorption of photons just below the bandgap energy.  Excitonic interaction [74] adds 



Optical Technologies and Integration 

41 

to, and possibly dominates, this effect allowing photons to be absorbed in a material that 

would normally appear transparent.  Creating multiple quantum wells of alternating 

high and low bandgap materials allows use of the quantum confined Stark effect.  This 

differs from the FKE in that application of a field shifts rather than broadens the peak 

excitonic absorption energy.  This is because the quantum wells confine electron-hole 

pairs, preventing ionisation and allowing the application of larger fields resulting in an 

increased Stark shift.  Note that the QCSE can be shown to be a quantised version of the 

FKE [75].  A typical MQW device has around 50 to 100 layers each of 5 to 10nm thick 

with a single chip able to sustain thousands of these devices [76].  Unfortunately, 

coupling light into a semiconductor is problematic at best leading to lower signal 

powers than with active emitters.  Interestingly, absorptive modulators can be used as 

detectors if field polarity is reversed. 

Reflective and refractive devices work by changing the optical properties of a structure 

such that the path length is altered [57].  Interference or propagation effects are then 

used to modulate the beam.  Although the crystals in such devices are optimal for 

waveguides as they provide high transmission, they are comparatively large for 

semiconductor devices and therefore cannot be directly integrated. 

The fact that modulators are not subject to carrier or photon build-up problems as seen 

in active emitters allows them to be used at higher speeds under certain circumstances.  

Unfortunately, this is also the principal drawback of modulators: they rely on an 

external optical source.  Manufacturers generally wish to construct systems as 

efficiently as possible using a single process technology and, if feasible, on a single 

chip.  The requirement of separate modulator and emitter, plus associated alignment, 

may add unnecessary complexity.  The author believes that applications requiring 

extreme performance will push modulator technology with recent technological 

breakthroughs placing them well for future development.  Specifically, Si compatible 

polymeric modulators have been demonstrated with a measured bandwidth of 110GHz 

given a meagre drive voltage of 0.8V [77]. 

3.4 Detectors 

Although many types of optical detector exist, this section will concentrate specifically 

on semiconductor devices by examining their construction, defining characteristics and 

electrical properties. 
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Semiconductor detectors can be broadly categorised into three: photoresistors, 

phototransistors and photodiodes.  The resistance of a photoresistor, such as a cadmium 

sulphide (CdS) cell, changes depending on the amount of incident light.  Unfortunately, 

their response is normally in the millisecond range and composition not compatible with 

conventional substrate materials.  Phototransistors, which can be fabricated in Si, 

control the flow of a current based on incident light intensity essentially providing 

amplification.  However, at low light levels their amplification is poor and their 

frequency response limited to around 200kHz due to carrier diffusion times [55].  

Finally we have the photodiode.  It is an Si compatible device that converts any incident 

light into a current.  Figure 30 shows a typical photodiode. 

Figure 30: Photodiode Detector 
SiO2 layer masks all but the active region.  Array shown in part (d) is not colour coded - 
each square represents a photodiode.  Layers not to scale. 

Photodiodes are the dominant optical detector technology.  They can be easily 

fabricated in large arrays using existing technology, offer fast response times and can 

even count single photons at picosecond speeds in incarnations such as the avalanche 
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photodiode (APD) [78].  Photodiodes are by definition efficient, however recovering a 

useable signal requires power input which scales directly with bandwidth. 

3.4.1 The Photodiode 

This section examines the theory behind the photodiode array used in both neural 

network demonstrators in detail. 

When light is incident on a photodiode, a current is produced through external circuitry 

which is proportional to the light intensity.  The photodiode works by exploiting the 

photovoltaic effect.  This current response is usually nearly, but not perfectly, linear.  

Electrons in the semiconductor junction of either p-n or p-i-n type are excited from the 

valence band into the conduction band by incident photons thus creating a current.  This 

can only happen if the photons carry an energy greater than the bandgap of the detector 

material.  At every wavelength the detector is therefore said to have a responsivity ℜ .  

It is defined as the ratio of generated photocurrent Ip over incident optical power Pi : 

 
i

p

P
I

=ℜ  Equation 14 

A real photodiode can be electrically modelled as shown in Figure 31. 

Figure 31: Photodiode Electrical Model 
Arrows indicate flow of current. 

The photodiode is considered to be an ideal current source, which produces a current Ip 

as examined above, electrically connected to components used to characterise the 

photodiode.  Cd is the junction capacitance since the depletion region acts as the plates 

of a capacitor.  This value limits the maximum detectable frequency and can be lowered 

by applying a reverse bias voltage.  Rd is the shunt resistance of the photodiode which is 

used to determine the noise current in the photodiode when no light is incident.  Ideally, 

the shunt resistance should be infinite, however typical values lie between 1 ΩM  and 

1,000 ΩM .  Shunt resistance can be measured by applying 10mV to the photodiode, 

reading the current and calculating the resistance.  Finally, Rs is the series resistance of 
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the photodiode.  It determines the linearity of the photodiode when operated in 

photovoltaic mode and should ideally be zero.  A device's series resistance Rs can be 

calculated by adding together both junction and contact resistances.  Typical devices 

have resistances of less than 1 Ωk .  Under normal circumstances Rs and Rd are 

considered negligible.  Cd is the most important parameter when designing a photodiode 

receiver. 

Photodiodes can be operated in a number of different ways depending on application, as 

shown in Figure 32. 

Figure 32: Photodiode Modes of Operation 
Unbiased mode has high sensitivity but low bandwidth.  Reverse biasing improves 
bandwidth response but adds to noise. 

Firstly, there is unbiased or photovoltaic mode, as shown in Figure 32(a) and (b), where 

reversing the photodiode will invert the output signal's polarity.  This mode offers low 

noise and high sensitivity but suffers from reduced bandwidth: such circuits are not 

normally operated above 350kHz, even when optimised.  Secondly, there is reverse 
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biased or photoconductive mode, as shown in Figure 32(c) and (d).  The reverse bias 

voltage sweeps electrons out of the junction improving both responsivity and 

bandwidth.  Unfortunately, this also results in a dark current Idk which adds to noise.  

Finally there is forward bias.  Photodiodes are not normally used in this mode as they 

simply conduct.  Returning to the photodiode electrical model in Figure 31, 

 dpt III −=  Equation 15 

Under reverse or unbiased conditions Id=0, so the total current is It=Ip.  However, if a 

forward bias current is applied then there is a decrease in It.  If It exceeds 100− mA the 

photodiode is usually destroyed as this is enough current to burn the contacts off. 

Noise is intrinsic in almost all real systems and the photodiode is no exception.  There 

are two main sources of noise in photodiodes.  The first is thermal noise, referred to as 

Johnson [79] or Nyquist [80] noise.  At absolute zero all electrons in the junction remain 

in the valence band but as the temperature increases they become excited and randomly 

elevate into the conduction band.  This results in an r.m.s. current Ij of: 

 
d

j R
fkTI ∆
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4

 Equation 16 

where k is the Boltzmann constant 123 JK1038.1 −−× , T is the absolute temperature in 

Kelvin, Rd is the photodiode shunt resistance and f∆  the bandwidth over which the 

noise is measured (usually 1Hz).  Note that thermal noise is also present in detector 

electronics and not exclusively in the photodiode. 

The second source of noise is shot noise [81]-[82].  Shot noise (or white noise) is a 

statistical variation in the current generated by both incident optical power Ip and dark 

current Idk. 

 ( )dkps IIfqI +∆= 2  Equation 17 

This is again an r.m.s. value where q is electronic charge C1060.1 19−×  and f∆  the 

bandwidth over which the noise is measured (usually 1Hz).  Dark current Idk is the 

current that flows in a photodetector when no optical radiation is incident and an 

operating voltage is applied.  It is a combination of surface leakage, generation and 

recombination of carriers within the depletion region and diffusion to the depletion 

region of thermally generated minority carriers. 

The total r.m.s. noise In is a combination of both Johnson and shot noise: 
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 22
sjn III +=  Equation 18 

Noise dominance in this equation depends on the mode of operation.  In reverse biased 

mode, the dark current Idk increases so shot noise Is becomes dominant over thermal 

noise Ij.  Unbiased mode does not apply a potential difference over the junction, 

eliminating the dark current Idk and causing Johnson noise Ij to become the dominant 

term.  Therefore, unbiased mode is well suited to ultra-low light level applications as 

Johnson noise is significantly smaller than the dark current. 

The total r.m.s. noise In is important as it helps to define the noise equivalent power 

(NEP) at a specific wavelength: 

 
ℜ

= nI
NEP  Equation 19 

This is the amount of incident optical power required ( 2
1-WHz ) to provide a signal-to-

noise ratio (SNR) of 1.  Average values range from 2
1-11 WHz101 −×  for large area 

photodiodes to 2
1-15 WHz101 −×  for small area ones.  NEP can be used to compare two 

similar detectors. 

Photodiodes are temperature sensitive but their response to temperature change is 

dependent on the mode of operation.  In unbiased mode, an increase in temperature will 

result in a decrease of shunt resistance Rd.  Rd is halved for every 6K increase in 

temperature [83].  In reverse biased mode, the dark current Idk is doubled for every 10K 

increase in temperature [13].  Although the exact change is device dependent, the trend 

remains the same with unbiased mode being more sensitive to temperature increase.  It 

should be noted that there is also a responsivity change with temperature but this is 

material dependent.  For example, lowering an Si photodiode's temperature improves 

responsivity at shorter wavelengths (blue to ultra-violet) and increasing it improves 

responsivity at longer wavelengths (near infra-red).  This change does not normally 

exceed a few percent under normal operating conditions. 

Reverse biasing a photodiode is essentially a speed to noise trade-off.  The 

demonstrators described in this thesis use low optical powers, however it is not 

necessary to minimise noise in a neural network as will be discussed later.  Therefore 

both approaches were taken, with the first generation demonstrator using a biased 

photodiode configuration and the second generation an unbiased one. 
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3.4.2 Transimpedance Amplifiers 

Transimpedance amplifiers, or current to voltage converters, take a current produced by 

a photodiode and convert it into a voltage.  In so doing, they improve both the linearity 

and bandwidth of photodiode response.  They are the basis of photodiode amplifiers and 

an essential, yet commonly overlooked, aspect of optical receiver design.  This section 

examines the theoretical design limitations and considerations of a transimpedance 

amplifier.  An understanding of this section is assumed in chapter 5. 

The frequency response of any photodiode amplifier is a complex AC problem which 

depends on many different design parameters [84]-[85].  Figure 33 shows the unbiased 

photodiode receiver circuit examined in this section. 

Figure 33: Unbiased Photodiode Transimpedance Amplifier 
This configuration creates a virtual earth at both positive and negative amplifier inputs. 

The bandwidth of a photodiode transimpedance amplifier is limited in one of three 

ways: parasitic capacitance, op-amp bandwidth or the requirement for phase 

compensation.  Each of these three limitations will be examined in turn and design 

equations given which allow circuit optimisation. 

Parasitic capacitance is inevitable in any resistor and is normally modelled by a 

capacitor pC  in parallel with the resistance affected, in this case fR .  The value of pC  

is usually around 0.25pF for normal resistors but this is increased by poor PCB layout.  

When dominant, the 3− dB point has a frequency of: 
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 Equation 20 

This equation shows that it is usually dominant when fR  is a large value, i.e. circuit 

amplification is high. 
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Figure 34: Operational Amplifier Bandwidth Limitations 
Circuit showing photodiode junction capacitance Cd, op-amp input capacitance Ca, 
parasitic capacitance Cp and feedback capacitance Cf. 

The next limitation is op-amp bandwidth.  Normally, the gain bandwidth product of the 

amplifier imposes a limit in voltage mode operation.  However, this is not the case in 

current to voltage mode.  Figure 34 incorporates additional components which allow us 

to analyse this circuit’s limitations.  These additional components are aC , which is the 

input capacitance of the operational amplifier (normally around 3pF), and dC , the 

photodiode capacitance. 

Sketching the response plot, as shown in Figure 35, aids frequency response analysis. 

Figure 35: Transimpedance Amplifier Frequency Response Plot 
Current to voltage response depends on open loop gain AOL and feedback factor 1/β. 

The I to V curve (solid green line) indicates transimpedance amplifier gain which peaks 

at pff .  This frequency is defined using two other parameters.  Firstly by OLA , which is 

the open loop gain of the amplifier.  At lower frequencies this gain has a fixed value.  
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However, as operating frequency continues to rise this parameter hits a point at which it 

begins to drop steadily.  This is because the product of gain and bandwidth is a fixed 

value, intrinsic to the amplifier chosen, which peaks at OLA  at low frequencies.  At 

frequency cf  the amplifier has no more gain left to give as this is the unity gain 

bandwidth product.  Secondly, the peak is also defined by the feedback factor β1  

(dotted red line), where β  is the fraction of amplifier output that feeds back to the 

input.  Initially, this value is zero, but it begins to rise at a rate of 20dB per decade from 

frequency if .  This frequency can be calculated using: 

 ( )adf
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 Equation 21 

The intercept of these two curves is important as it defines the point at which available 

gain is not enough to satisfy the feedback factor β1 .  Peaking is usually exhibited at 

this frequency pff  and it can be calculated by taking the geometric mean of cf  and if : 
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 Equation 22 

After this point frequency response drops off by approximately 40dB per decade.  For a 

two pole system such as this, we therefore have a bandwidth of: 

 pfbw ff 4.1=  Equation 23 

To improve this bandwidth response one can either choose an amplifier with a larger cf  

parameter or increase if .  As can be seen from the equations above, if  is dependent on 

both input capacitance and feedback resistance.  Any decrease in capacitance or 

resistance will increase frequency response, as shown in Figure 35 by the dashed blue 

line for if ′  and pff ′ .  To maximise bandwidth rather than the gain-bandwidth product, 

these values must be moved to the right as far as possible.  To do so, one selects a 

feedback resistor using the following equation: 

 ( )adc
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 Equation 24 

This will move if ′  to the same value as cf , utilising the entire amplifier bandwidth.  

Circuits using this value of feedback resistor are inherently stable and will not require 

any phase compensation. 

Reverse biasing is a useful method for reducing photodiode capacitance dC  and 

increasing bandwidth.  Capacitance dC  can easily be reduced, unlike that of the 

amplifier aC , and since it is normally far greater and therefore dominant, any reduction 
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will have a significant impact on bandwidth.  Applying a reverse bias voltage rbV  to the 

photodiode will result in a new capacitance of: 
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 Equation 25 

where dC  is the unbiased diode capacitance and dϕ  the built-in voltage of the diode 

junction (usually ~0.6V).  Unfortunately, this technique introduces a dark current noise, 

as discussed previously, making it unsuitable for small signal, high gain applications. 

Resonance is a problem that seriously affects transimpedance amplifier performance 

and design.  Resonance occurs at frequency rf  and is responsible for gain peaking in 

the frequency response plot.  Frequency rf  can be determined using: 
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 Equation 26 

If no attention is paid to resonance then the amplifier design could be unstable or even 

oscillatory. 

The requirement for phase compensation is the final limiting factor in transimpedance 

amplifier design.  It is used to remove resonance and stabilise the circuit.  

Unfortunately, circuit stability is traded off against bandwidth.  Phase compensation is 

achieved by adding a further feedback capacitor fC  in parallel with the feedback 

resistor fR .  The value of this capacitor can be approximated using: 
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or calculated more precisely for applications sensitive to parasitic capacitance using: 
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If the capacitor value turns out to be zero or negative, then there is enough inherent 

parasitic phase compensation in the circuit to ensure stability.  This is usually the case 

in high gain applications.  A useful check to ensure amplifier stability with any value of 

compensation capacitor fC  is: 
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 Equation 29 



Optical Technologies and Integration 

51 

Unfortunately, the addition of this feedback capacitor fC  means that there are changes 

to the equations specifying both parasitic cut-off frequency pf  and β1  feedback 

frequency if .  Presuming that pf CC >> , pf  now becomes: 
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=  Equation 30 

A reduction in if  also decreases bandwidth.  Again, presuming fC  dominates pC , if  

becomes: 
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 Equation 31 

These equations must be used in any circuit that has a phase compensation capacitor.  

Presuming fC  has been matched adequately, the resonance frequency equations are 

now irrelevant as this capacitance prevents circuit oscillation, damped or otherwise, and 

peaking. 

Noise analysis in this circuit is problematic at best.  One new fixed source of current 

noise is thermal noise from the feedback resistor fR : 
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 Equation 32 

where k is the Boltzmann constant 123 JK1038.1 −−× , T is the absolute temperature in 

Kelvin and f∆  the bandwidth over which the noise is measured (usually 1Hz).  This 

noise current is combined with junction and shot noise to give a total amplifier input 

current noise of: 

 2222
afsji IIIII +++=  Equation 33 

where aI  is the amplifier input noise.  Theoretical determination of amplifier input 

noise is complex as it consists of five different noise sources, each dominant between 

certain pole frequencies.  Further information can be found in [84]-[86]. 

This section is by no means comprehensive.  After initial design, the circuit will almost 

inevitably require experimental adjustment to deal with component and PCB layout 

issues. 

3.5 Optical Interconnect Elements 

This section examines optical components that can be used to create static or dynamic 

two dimensional interconnect patterns in free space. 
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The first component considered is the diffractive optic element (DOE), the operation of 

which was first demonstrated in 1967 [87].  In the same way that a diffraction grating 

divides an incident beam in one dimension, the DOE shapes a beam in two dimensions 

to create a desired intensity profile in the far field of a Fourier lens.  These devices are 

planar elements consisting of areas which retard incident light.  They can perform 

complex optical functions which may have previously required several optical 

components, that is if the function was at all feasible in any other manner. 

DOEs are compact, can be constructed using robust materials such as silica and are 

simple to manufacture using existing VLSI fabrication techniques.  They can be 

mathematically described by kinoforms [88]-[89] and are fabricated as either binary or 

multilevel.  Binary elements use a single stage fabrication process resulting in good 

uniformity across the array.  Multilevel structures, as shown in Figure 36, require as 

many fabrication steps as there are layers, leading to an increase in non-uniformity due 

to alignment mismatch of 1% to 2% per layer.  However, multilevel structures result in 

substantially improved transmissions.  Note that light which is not transmitted is 

normally scattered outside the diffraction window and not absorbed by the DOE. 

Figure 36: Multilevel Diffractive Optic Element 
Surface micrograph of a multilevel DOE. 

A repeating pattern exists in the DOE which is referred to as its period and defines the 

maximum angular divergence.  As the grating period gets smaller, the maximum 

diffraction angle increases.  DOEs are matched to a specific wavelength to minimise or 

eliminate the zero diffraction order.  Complex and large scale interconnection patterns 

can be created using a DOE.  Heriot-Watt University has fabricated devices in-house 

capable of fanning-out to 128×128 elements.  Obviously such large scale interconnects 
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are limited by input beam intensity since every fanned-out channel must have a large 

enough fraction of the input beam power to make it detectable. 

The second component examined is the spatial light modulator (SLM) [90] which 

works in the same way as the DOE except that it is programmable.  These devices are 

based on liquid crystal displays (LCD) in that they contain a large number of 

individually addressable voltage controlled pixels.  Figure 37(a) illustrates the operation 

of a twisted nematic (TN) device with no voltage applied.  The liquid crystal cell rotates 

the polarisation state of any incident light thus allowing it to pass through the analyser.  

In Figure 37(b), a voltage is applied across the liquid crystal which prevents rotation of 

polarisation state.  Since vertically polarised light cannot pass through a horizontal 

analyser there can be no transmission of light. 

Figure 37: Spatial Light Modulator 
Vertical polariser converts the input beam to a single vertical polarisation state.  
Horizontal analyser only allows transmission of horizontally polarised light.  This device 
is configured to modulate amplitude.  Replacing the horizontal analyser with a vertical 
one inverts the effect of any applied voltage. 

When used as shown to modulate amplitude, the SLM can be used to control the routing 

of a specific transmission channel.  Removal of both polariser and analyser generates 

phase lag rather than amplitude modulation allowing an SLM to be used as a 

programmable DOE. 

The use of SLMs tends to be limited by their relative expense, complex control logic 

and slow refresh rates.  If used to control phase, configurations need to be stored in 

memory as computation of a new configuration requires a large amount of processing 

power and is therefore not feasible in real time.  The devices do not particularly suffer 

from fabrication limitations, indeed megapixel devices already exist [91], but rather 

from liquid crystal response times and serial reconfiguration.  As SLMs are addressed in 
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a serial manner, larger arrays require longer reconfiguration times consequently 

reducing the refresh rate of the entire array.  These disadvantages mean that SLMs 

rarely have frame refresh rates of greater than a few kilohertz. 

3.6 Optoelectronic Integration 

This section examines the degree to which optoelectronic interconnects can be 

integrated into existing systems [92] and the engineering issues that arise. 

The extent of optoelectronic component integration will depend primarily on identified 

bottlenecks in any architecture.  Applications range from low level integration of optical 

components directly onto a chip to high level integration of fibre ribbons or bundles 

connecting remote systems and boards.  Figure 38 illustrates a few different levels of 

integration. 

Figure 38: Optical Interconnection 
Optical interconnects can be integrated at a low level interconnecting chips directly or at 
a high level connecting systems to an optical fibre based network. 

Starting from the highest level and working down, fibre interconnects can be employed 

to integrate systems or boards using a dedicated component such as that shown in 

Figure 39.  Fibres are directly butted up to an emitter or detector, or to a waveguide 

which channels the signal.  Optical fibres can be used for board to board interconnection 

to create a backplane between multiple system boards with little attention to 
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arrangement or alignment.  Few changes are needed to use the same components for 

connection of remote systems at the same data rates as local boards. 

Figure 39: Fibre Ribbon Interconnect 
This connector uses a waveguide to reflect the signal through 90º and into or out of a 
fibre ribbon. 

Free space can also be used to interconnect boards in a highly parallel manner.  This is a 

short range solution and cannot be practically implemented over more than a few tens of 

centimetres.  Again, a dedicated interconnection chip is used but it must be kept in 

alignment with its counterpart as shown in Figure 40.  The transmission media can be 

composed of a single block waveguide, sealing the system from potential environmental 

interference such as dust. 

Figure 40: Board to Board Interconnect 
Systems such as this usually require focussing.  This is achieved using a bulk lens or 
micro-optic lenses fitted over every VCSEL, neither of which are shown. 
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Figure 41: Chip-to-Chip Interconnect 
Components directly integrated onto a die with unrelated functionality. 

The ultimate goal of optical interconnection is to integrate components directly onto 

chips with high bandwidth requirements.  Figure 41 illustrates a chip-to-chip 

interconnect using a single waveguide in a free space type configuration.  The two chips 

shown here could be a processor and its memory, the connection between which is 

notoriously slow.  Eventually optical interconnects may be fabricated across a single 

chip to replace long lines or improve clock signal distribution.  Such routing can be 

achieved using polysilicon or SiO2 waveguides as they can be fabricated directly onto 

the chip's surface. 

Integration of optoelectronic components onto existing Si substrates is limited by the 

indirect bandgap in Si.  The extensive use of Si is due to its low cost, robust nature and 

the ease with which it can be processed.  Although detectors can be fabricated in Si, 

emitters and modulators require another direct bandgap material.  However, such 

materials cannot be directly deposited onto Si as they typically have a different size of 

crystal lattice.  This lattice mismatch causes strain within the device, resulting in cracks 

if the mismatch is too great, which can render connections and thereby entire 

components useless.  There are two ways to ease or eliminate this problem using either 

flip-chip bonding or strained layers. 

Flip-chip bonding attaches two intrinsically different substrate types using bumps.  

Figure 42(a) shows an example of solder bump flip-chip bonding.  This technique 

attaches a direct bandgap material to Si by depositing solder balls onto bond pads, as 

seen in Figure 42(b), and then carefully positioning the complementary direct bandgap 

substrate on top.  Controlled heating is used to reflow the solder balls thus making a 
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connection.  Unfortunately this technique can result in strain between both layers as the 

solder balls are inflexible when cool and different substrates have different coefficients 

of thermal expansion.  Note that since solder bumps are typically 15µm in diameter, the 

substrate must be transparent or etched through to transmit any optical signal. 

Figure 42: Flip-Chip Bonding of Incompatible Substrates 
Solder bumps reflowed to make contact.  Polymer bumps compressed to 80% of original 
size to make contact.  Layer detail for MQW on page 40 and VCSEL on page 38.  Layers 
not to scale. 

An alternative flip-chip bonding technique, called compliant polymer flip-chip bonding 

[93], is shown in Figure 42(c).  Elastic polymer bumps of around 100µm high and 

50µm in diameter are created on an Si substrate and coated in gold so that they conduct.  

Their large dimensions allow waveguides to be integrated between both substrates.  The 

complementary substrate is then lowered on to the bumps and pressure applied before 

the substrate is tacked in place.  Compression of the bumps to 80% of their original size 

ensures a good pressure contact.  Strain is considerably less than with solder bumps as 
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polymer bumps are elastic by definition thus allowing for movement through warpage 

and shrinkage. 

Direct growth of an epitaxial layer on top of a dissimilar substrate, or heteroepitaxy 

[56], is sometimes used to integrate direct bandgap materials with Si.  One method is 

deposition of a thick epitaxial layer to give a strain relaxed junction.  The theory is that 

this layer is thick enough to ensure that few defects reach the surface.  However, many 

defects still propagate into the epitaxial layer making successful manufacture of even 

simple circuits a difficult process.  Deposition of a large number of epitaxial layers of 

alternating composition below a certain critical thickness results in a strained layer 

superlattice [94].  This allows strain to be dealt with gradually over many layers but 

does not prevent defects, it only reduces their occurrence.  The final method is 

pseudomorphic growth.  By ensuring that the thickness of an epitaxial layer is less than 

the critical thickness at a particular mole fraction the layer structure is forced to conform 

to that of the previous layer.  Only the latter method showed any commercial potential 

in 2001, specifically for creating devices using SiGe [95]. 

Two recent developments indicate that both flip-chip bonding and heteroepitaxy may 

soon be superseded.  The first development is the construction of a reasonably efficient 

Si LED [96].  This is done by creating a series of inverted pyramids which reflect light 

back into the semiconductor.  This light trapping effect results in efficiencies of 1% at 

room temperature, an efficiency increase of between one to two orders of magnitude.  

The second and most promising development is the discovery that a buffer layer of the 

ceramic strontium titanate (SrTiO3) eliminates strain and allows the efficient growth of 

III-V direct bandgap semiconductors onto an Si substrate [97]-[98].  GaAs electronic 

circuits on an Si substrate have already been constructed using this technique with 

dimensions which far exceed previous GaAs size limits. 

3.7 Optical Highways 

The concept of optical highways [99]-[100] envisages a high bandwidth low latency 

general purpose multiprocessor interconnection architecture.  Figure 43 schematically 

shows such a highway which is used to connect nodes in an arbitrary topology where 

each node has access to more than 1,000 channels.  A node is considered to consist of a 

processing element and shared memory space.  The interconnect is point to point and 

hard wired, with several thousand channels being passed to and from each node via an 
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optoelectronic interface into a free space optical relay system which can hold several 

hundred thousand channels.  The number of nodes that can be interconnected in a 

specific network topology is primarily limited by aberrations in bulk optic lenses. 

Figure 43: Optical Highway 
Free space optical highways interconnect multiple nodes through a series of relays that 
are used to add or drop thousands of channels at a time. 

Polarising optics are used to route channels as shown in Figure 44.  A polarising beam 

splitter deflects channels of a specific polarisation to a node with each channel's 

polarisation state determined by patterned half wave plates (HWP). 

Figure 44: Optical Highway Construction 
Polarising optics define a fixed network topology. 

Optical highways can be made reconfigurable using an SLM in place of the patterned 

HWP.  In order to maintain efficiency, run-time reconfiguration cannot be performed 

since it requires a reconfiguration controller with associated hardware reconfiguration 

delays.  Compile time reconfiguration is desirable but not necessarily a requirement.  
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Regardless of when reconfiguration occurs, most algorithms will need to be adjusted for 

computation on a multiprocessor system.  It would therefore be simpler to fit the 

algorithm to a fixed topology optical highway.  Thus complex reconfiguration control 

hardware can be eliminated, including potential run time issues such as determination of 

the entire optical highway’s current state. 

Given components similar to those already constructed and in use by the SCIOS project 

in this research group [101], we can extrapolate the potential bandwidth of such a 

system.  Considering that 2,500 MQW based optical channels off-chip are feasible at 

data rates of 250MHz each, a two node system has a bisection bandwidth in excess of 

1Tbs-1.  Depending on topology [99], the potential bisection bandwidth is therefore far 

in excess of any existing electronic architecture. 

3.8 Conclusion 

This chapter has examined the current technologies that enable optical interconnection 

and detailed the design issues involved in optical signal detection.  It has outlined why 

the interface between optics and electronics is constructed using hybrid chip 

technologies which employ a direct bandgap optical substrate hosting emitters and 

detectors flip-chip bonded onto an Si substrate hosting detectors and processing logic.  

Systems such as this are referred to as smart pixel arrays (SPAs) and are defined as an 

optoelectronic device that may have memory, intra-pixel processing, inter-pixel 

communication and an optical input or output element. 

The process technologies that enable smart pixels are beginning to mature in their own 

right.  However, direct integration and exploitation of their full bandwidth potential is 

still some way off.  This has previously been due to fabrication difficulties, however 

alternative methods of integration are beginning to emerge that can reduce integration 

complexity and improve yield.  Viability and reliability of such systems has recently 

been clearly demonstrated by the company Terraconnect [102].  In 2001, it had just 

reached prototype stage with a single general purpose optical interconnect module that 

integrates 320 oxide confined VCSELs in a 16×20 array, 320 VCSEL driver amplifiers, 

320 GaAs p-i-n photodiodes, 320 transimpedance amplifiers and all the coding and 

switching logic to ensure error free data transmission.  At the time of writing, this 

system had been running continuously for just over eight weeks without so much as a 
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single bit error.  This is further proof that not only are these systems feasible but they 

are becoming a reality. 
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4 Neural Networks for Switching 

This chapter examines the concepts behind parallel systems and introduces a type of 

highly parallel architecture called the artificial neural network.  It is shown that a neural 

network can be adapted to solve the assignment problem and that its very nature brings 

scalability to an otherwise impractical problem. 

4.1 Parallel Systems 

To sustain the rates of growth predicted by Moore [25] there is a need to develop new 

computational techniques since traditional sequential computers are rapidly approaching 

their physical performance limit.  When this limit is reached, the only way forward will 

be to implement parallel architectures.  The parallelism of an architecture is normally 

classified into one of four categories as defined by Flynn's taxonomy [103]: 

• Single instruction stream, single data stream (SISD).  This model represents a basic 

uniprocessor system.  These systems do not support true parallelism but can emulate 

it if they support multitasking. 

• Single instruction stream, multiple data streams (SIMD).  A lot of scientific 

applications such as image processing or particle system simulations have an 

identical sequence of commands to be carried out on more than one data stream.  

Such a system would therefore execute one command on multiple data streams in 

lock-step as seen in vector and array processors. 

• Multiple instruction streams, single data stream (MISD).  This is the hardest type of 

system to envisage but involves one data stream which needs to be operated upon by 

more than one set of instructions.  An example of such a system would be a pipeline 

or systolic array where one processor performs a set of operations on the data stream 

before passing it on to another processor which performs a different set of 

operations. 

• Multiple instruction streams, multiple data streams (MIMD).  This is the most 

powerful form of parallel processing system where multiple processors work on 

different data streams simultaneously. 

These categories describe an increasing level of parallelism starting from none in SIMD 

architectures to highly parallel MIMD architectures.  If we assume that any speedup is 
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linear, a MIMD system with two processors should be able to perform the same amount 

of operations in half the time that a similarly configured SIMD system would take.  

Unfortunately this is rarely the case as a number of fundamental limitations exist. 

The most significant issue in parallel processing systems is computation sequentiality.  

Consider a parallel system executing an algorithm where no other processors can 

proceed until one specific calculation has been performed.  This means that all other 

processors must remain idle until that particular processor is finished, effectively 

reducing optimum speedup.  In 1967 Amdahl described a law [104] which states that the 

maximum speedup S possible is related to the number of processors p in a system and 

the fraction of the computation f that must be performed sequentially: 
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 Equation 34 

To achieve linear speedup there can be no sequential element at all in the computation, 

with f=0.  Such a case is not common in the real world, with the overall performance of 

a parallel system rarely equalling the combined computational power of all its 

processors.   

Communication overheads can exacerbate sequentiality issues and are a matter that 

must be taken seriously in multi-processor architectures.  If overheads are large, it may 

take more time to divide data and code amongst multiple processors and return it to the 

originating processor than it would to process the computation on a single processor in 

the first place.  Although this case implies a small portion of parallelism before the 

computation returns to being sequential, consider the overheads in a system with 

thousands of processors.  This results in what is commonly known as a mortar shot 

graph as shown in Figure 45.  These graphs show a gradual, but tailing off, speedup as 

more processors are applied to a computation.  Eventually there are so many processors 

working on the same computation that communications overheads become restrictive 

resulting in a reduction of overall system performance.  Such behaviour is noticeable 

even with a large proportion of computation parallelism.  This suggests that there is an 

optimal number of processors for a parallel system, however any figure is dependent on 

the fraction of sequentiality of the computation and inter-processor communication 

delay.  Therefore most parallel systems are constructed as general purpose machines 

which require software optimisation to ensure best use of resources. 
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Figure 45: Mortar Shot Graph 
Communications overheads can result in an increase in computation times if more 
processors are applied to a computation as shown by the solid blue line.  The dashed red 
line indicates optimal speedup presuming there is no sequential component to the 
computation and communications overheads are negligible. 

Increasing the overall performance of a parallel system can be achieved by boosting the 

performance of each processor, by adding to the total number of processors or by 

reducing communications overheads.  If the performance of each processor is increased 

there is a reduction in sequentiality issues.  Alternatively, additional processors provide 

a performance increase only if the computation is massively parallel in nature and 

communications overheads are low.  Figure 46 shows the different approaches taken in 

an attempt to reach El Dorado [105].  Note that operating systems can balance the load 

on a parallel system by releasing idle processors to other processes and computations. 

Figure 46: Performance versus Parallelism 
Different systems trade processor performance against number of processors in an 
attempt to reach computational El Dorado. 
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It seems that no matter how hard we try all odds are stacked against a parallel computer 

system that achieves a linear performance increase with each additional processor.  

Doubling the number of processors in such a system should logically give, at best, twice 

the performance.  This had been the view until a particular exception was discovered 

called superlinear acceleration [22].  It was first noticed on the highly parallel Ocean 

algorithm which simulates the flow of eddies and currents in the ocean.  Addition of 

another processor to a single processor system slightly more than doubled 

computational throughput.  The cause was determined to be that the processors shared 

their caches and therefore had effectively double the normal amount of cache available.  

This is an advocate, if a rather poor one, for parallel systems but there are still too few 

instances in which the perfect situation arises to make parallel systems unarguably 

advantageous. 

The ultimate goal of parallel processing is to have a single unit which, without the aid of 

additional communications logic, can be attached seamlessly to another doubling 

available processing power.  The user should not have to consider issues such as 

memory location or addressing, topology or communications efficiency but simply add 

another processor to enhance performance.  Unfortunately, parallel implementations 

still tend to be application specific.  The creation of a universal parallel system is 

plagued by architectural trade-offs.  One promising architecture was the INMOS 

Transputer [106], however it was released with no software base and few potential 

customers wanted to start writing compilers.  It did not take long before faster serial 

processors were released effectively putting an end to the Transputer before it even got 

started. 

The use of optical interconnects can alleviate communications overheads in the short 

term but cannot solve sequentiality issues within a computation.  Nevertheless, parallel 

computer systems are becoming ever more established as a viable alternative to 

sequential systems and indeed all of today's supercomputers are parallel machines 

[107].  However, there are hypotheses which suggest that computers are evolving in the 

wrong direction [108].  Although supercomputers exist that can perform in excess of 

1013 floating point operations per second [109] they lack both a degree of intuition, 

which would allow them to rapidly extrapolate important information from raw data, 

and flexibility, which would allow them to adapt to a specific type of problem.  These 

issues can be addressed by neural networks and field programmable gate array (FPGA) 

technologies respectively, both of which will be examined in this and later chapters. 
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4.2 Artificial Neural Networks 

Artificial neural networks (ANNs) [110]-[113] were designed to be an analogy of the 

human brain but they are still a considerable way from rivalling its size and complexity.  

In computer science terms, the human brain is modelled as a highly interconnected 

MIMD architecture that contains around 1011 simple processing elements called 

neurons.  It is the extreme interconnectivity within neural networks that is their 

attraction since noise, system errors or neuron failure are normally inconsequential.  An 

entire calculation in a sequential system can be ruined by a single bit error whereas a 

neural system degrades gracefully.  This fault tolerance creates a robust system and is 

the major advantage of artificial neural networks. 

Even though the cycle times of silicon computer systems are 106 times faster than that 

of the human brain, the stochastic techniques used by computers are inefficient at 

performing tasks such as image recognition.  Neural networks on the other hand have 

proven themselves at recognising patterns or trends in seemingly random data.  

Combining the speed of silicon and the abilities of neural architectures may one day 

lead to an evolution in computer systems. 

4.2.1 The Artificial Neuron 

A neuron is the basic building block of neural networks (NN) and can be seen in Figure 

47.  The artificial neuron approximates the behaviour of a neuron in nature. 

Figure 47: The Neuron 
A neuron sums all incoming values x1-xn after multiplying them by an appropriate weight 
w1-wn , adds a bias b and finally determines its response based on the activation function 
f(x). 
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A neuron takes n inputs x1-xn, multiplies their strength by a scalar weight w1-wn known 

as the synaptic weight, sums the products and then adds a bias b: 

 bwxx
n

k
kk += ∑

=1

 Equation 35 

Synaptic weights allow certain inputs to have greater significance than others.  The 

transfer function ( )xf  is then applied to the summation giving a final neuron activation 

level y.  Transfer functions are neuron dependent and vary with application.  Figure 48 

shows some common transfer functions. 

Figure 48: Sample Transfer Functions 
Neuron transfer functions f(x) determine the neuron's activation level y depending on the 
value of x. 

One of the most commonly used transfer functions is the sigmoid function: 

 ( ) βxe
xf −+

=
1

1
 Equation 36 

where β  determines the function's slope.  The advantage of the sigmoid function is that 

it has smooth transition limits, unlike functions such as the step or heaviside, yet will 

converge asymptotically to a decision as the magnitude of x increases, unlike linear 

functions.  Note that some applications use the hyperbolic tangent whose output is 

similar to that of the sigmoid function except that its value ( )xf  ranges from 1−  to +1 

whereas the sigmoid function range is between 0 and +1. 
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The neuron is the basic building block of neural networks and by combining them in a 

specific manner, altering their transfer functions, input weights and biases, a variety of 

applications can be addressed, the computation of which proves prohibitive on 

conventional architectures. 

4.2.2 Neural Network Types 

There are many types of neural network with varying characteristics that suit them to 

specific applications.  Table 3 shows some common networks specifying both the input 

taken and method used to train them. 

Neural Network Name Input Type Training Method 

Hopfield Net Binary Supervised 

Hamming Net Binary Supervised 

Carpenter/Grossberg Classifier Binary Unsupervised 

Perceptron Continuous Supervised 

Multi-Layer Perceptron Continuous Supervised 

Kohonen Self-Organising Feature Maps Continuous Unsupervised 

Table 3: Sample Neural Networks 
Common neural networks including typical input type and training method used. 

Input type defines whether binary or continuous valued input is normally taken.  The 

output type is dependent on transfer function used.  These networks can again be sub-

classified dependent on procedure used to train them.  Unsupervised learning or self 

organisation is where the neurons compete for data with no desired response applied 

since there is no particular target set.  Such networks discover salient statistical features 

in information by themselves and are therefore suited to exploratory work.  Supervised 

or associative learning is where there is a specific response that must be achieved.  

Networks trained in this manner are suited to modelling. 

4.2.3 The Perceptron 

This section examines a feed forward neural network called the perceptron in order to 

demonstrate the relationship between a neural network's size and the problem 

complexities that it is capable of solving.  Rosenblatt [114] invented a variation on a 

simple neural network, which he called the perceptron, that is especially suited to 
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elementary pattern classification problems.  Figure 49 shows three examples of 

perceptron networks each with differing levels of complexity. 

Figure 49: Perceptron Networks 
Perceptron networks can be used to solve the XOR problem.  The network in part (a) has 
insufficient complexity to represent the problem.  Additional neurons and layers in part 
(b) allow the problem to be modelled correctly.  Further neurons and layers in part (c) 
correctly represent the problem but with unnecessary complexity and detail.  This 
illustrates that neural network size can be optimised to a specific application. 

The exclusive or (XOR) [115] problem takes two inputs x1 and x2 and classifies them 

into either category A or B indicated by the value of y.  This is considered to be the third 

dimension when graphed as a hyperplane.  All three hyperplanes in Figure 49 indicate 
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the actual output from y using contrastingly shaded regions, the numeric value of which 

is irrelevant.  Target classifications for A and B in particular regions are also shown here 

and, presuming that the network classifies successfully, both A targets must lie within 

the same shade of region whereas both B targets should be in the oppositely shaded 

region. 

The simplest type of perceptron is shown in Figure 49(a) and consists of a single layer 

with one neuron.  Such networks are only capable of classifying information using a 

single straight hyperplane line.  This is not sufficient to successfully implement the 

XOR function with the neuron responding correctly to one occurrence of A but not the 

other. 

The next increment in complexity is a two layer perceptron as shown in Figure 49(b).  

This network is capable of implementing the XOR function as the network reproduces 

more than a single hyperplane line.  It can therefore model open and closed convex 

regions. 

Perceptrons with more than two layers are referred to as multi-layer perceptrons (MLP) 

as shown in Figure 49(c).  They differ from other perceptron networks in that they have 

hidden layers, the output of which is not externally observable.  Each additional layer 

enables an extra, distinct and non-linear classification line thus allowing the creation of 

decision lines with almost any shape.  This network can implement the XOR function, 

however the hyperplane reveals unnecessary complexity.  The advantage of MLPs is 

their ability to model training sets that are not linearly separable. 

Perceptron networks have two modes of operation: learning and recall.  Learning mode 

trains the network to simulate appropriate data by altering each neuron's input weights 

until the system is modelled to a set of predefined limits called the target set.  Recall 

mode applies a set of values which the perceptron will attempt to classify based on what 

it has previously learned. 

4.2.4 Summary 

Neural networks may exhibit a number of strengths when compared to conventional 

computational methods: 

• They can be set up to learn through experience from the input data itself. 

• Applications include classification, noise reduction or prediction problems. 

• They can make a conclusion even though input data is not well defined. 
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• Patterns can be extracted even if differences are subtle. 

• Decisions can be made even when data is chaotic by mathematical standards. 

Neurocomputing is an immense theoretical field.  This section has examined some 

neural network basics and complexity issues through the introduction of a common 

neural network type.  Even though large scale neural computers do not yet exist their 

possible applications remain diverse from pattern recognition in both spatial and time 

domains to the implementation of digital logic with a degree of fault tolerance. 

4.3 Solving the Assignment Problem 

Current hardware and software systems suffer from an exponential increase in 

computational complexity when solving the assignment problem.  This section 

considers the problem and proceeds to propose a solution using the inherent parallelism 

of a neural network to reduce computation times.  Problem mapping is examined for 

both crossbar and Banyan packet switch architectures. 

4.3.1 The Assignment Problem 

As the complexity of modern communications and computational systems increases so 

does the need to develop techniques that deal with common assignment problems [116]-

[117] in situations such as: 

• Network and service management. 

• Distributed computer systems. 

• Work Management systems. 

• General scheduling, control or resource allocation problems. 

The common assignment problem is essentially optimising task allocation to all 

available resources thus maximising throughput.  In a distributed computer system this 

results in a many-process computation being finished in the shortest possible time, 

whereas in a network management system packets are routed to optimise switch 

throughput and minimise blocking. 

4.3.2 Neural Network Implementation 

This section presents a neural network algorithm that solves the assignment problem in 

both crossbar and Banyan switches for packet routing [118], a problem known to be 

analogous to the travelling salesman problem (TSP).  The TSP problem is a renowned 
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NP complete problem [119] which means that although it can be solved by integer 

programming techniques, such as the Murnkes algorithm [120], it is computationally 

intensive and complexity grows exponentially as its order increases.  Thus, a simple 

single processor solution will not provide satisfactory scalability. 

One alternative is to apply a neural network to the TSP problem [121]-[122].  The 

advantage of a neural net lies in the speed obtained through its inherent parallel 

operation, especially when dealing with large problem sets.  Such implementations will 

easily outperform any other method at higher orders of network size [116], [123]-[128] 

providing a very good, but not always optimal, solution.  It has been shown [116] that, 

at lower orders of network size, the average solution is within 3% of optimal.  However, 

as the network size grows this figure improves slowly and begins to approach an 

optimal solution. 

The crossbar switch controller described here arranges neurons in a two dimensional 

array representing all possible input to output connections such that each neuron 

corresponds directly to a crosspoint on the switch as seen in Figure 50.  In order to 

choose a set of connections, the neurons representing all the requested connections are 

enabled simultaneously and set to the same intermediate level.  Each has a bias that 

tends to increase its output, but also receives inhibitory inputs from those neurons which 

represent blocking connections.  Crossbar switches can be blocked at their inputs and 

outputs only, so the neurons are arranged to be inhibited by others in the same row or 

column.  All other possible connections are set to zero.  The dynamics of the network 

resolve the conflicts between all the mutually excluded neuron pairs, leaving a valid set 

of neurons in the on state and the remainder off.  The network is thus behaving as a 

winner take all (WTA) system with a particularly simple interconnect pattern - each 

neuron sees only its row and column neighbours, each of which are connected to it by a 

fixed, inhibitory weight.  It is apparent that such a pattern is space invariant, in that it 

remains fixed regardless of where in space it is formed, and therefore highly suitable for 

implementation in a diffractive optical system. 
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Figure 50: Neural Network Crossbar Switch Controller 
Based on the connections requested by incoming packets, the neural network chooses an 
optimal solution, sets the appropriate crossbar switches and then selects the chosen 
packets. 

It is worth taking into consideration how other types of switch might be controlled in 

this way, particularly with regard to exploiting shift invariant interconnection patterns.  

Consider the scheduler shown in Figure 51.  In this case the incoming packets have a 

header address which determines their path through the Banyan network.  The penalty is 

of course that the Banyan type of switch shown here is internally blocking and a more 

complex task must be performed by the scheduler.  The neural network scheduler copes 

well with this added complexity in that the correct functionality may be attained by 

merely providing additional inhibitory paths to provide contention between requests for 
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these blocking configurations.  How this may be done can be seen by considering the 

grid of neurons with the left hand vertical edge corresponding to the input port of a 

packet and the lower horizontal edge corresponding to an output port.  Since the 

destination and input positions are known for any packet, the internally blocking 

connections are clear and may be explicitly programmed in advance [129].  The 

resultant pattern will perform a WTA optimisation and allow the switch to operate. 

Figure 51: Neural Network Controller for a Self Routing Multistage Banyan Switch 
Here the neural network selects an optimal packet solution and notifies the input buffers.  
It does not directly control the switching network. 

A novel feature in this work is making such patterns amenable to optics.  What is most 

important from the perspective of a diffractive optical implementation is that the final 

pattern of optics that is generated is space invariant.  The interpretation of one of the 

edges of the neuron grid in bit-reversed addressing order makes the inhibitory 

interconnection pattern once more space invariant and consequently suitable. 
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4.4 Neural Network Algorithm 

The key to utilising the parallelism of a neural network is matching the network as 

closely as possible to the problem.  This section examines the algorithm used by our 

system in detail with specific reference to the crossbar implementation.  Adjusting the 

algorithm to the Banyan network simply requires a different interconnect pattern. 

4.4.1 Crossbar Switch Notation 

A crossbar switch can be abstracted as a set of m inputs and n outputs where each input 

can be switched to any output by closing the correct crosspoint switch.  Figure 52 

details how a matrix may be mapped onto the crossbar switch, each crosspoint having a 

corresponding matrix element. 

Figure 52: Matrix Representation of Crossbar Switch 
A matrix can be used to represent the crossbar switch mathematically.  Each matrix 
element represents a neuron.  Neurons can take values that vary continuously between the 
on and off levels of one and zero respectively. 

A specific element y in any matrix can therefore be referenced using yij, where i is the 

input line and j the output line.  Every element in the matrix can take on a continuous 

range of values.  Normally a value of 1 is used to represent a connection or a connection 

request and 0 for off.  These values and their legality is dependent on situation.  

Equations 37 and 38 both represent the crossbar switch in Figure 52 but are taken from 

different points of view.  Equation 37 represents a set of desired connections where 

three input lines have requested connection to two different output lines.  Such a matrix 

is legal regardless of the matrix element values.  Here, input i=1 has requested 

connection to output j=3 and both inputs i=2 and i=3 have requested connection to 

output j=4.  One request is obviously going to have to wait. 
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Equation 38 on the other hand shows a sample neural network response to Equation 37.  

One request has been discarded in favour of another since only one input line can be 

connected to one output line at any time.  A response is considered legal if no other 

connections on the same input row or output column has been selected. 
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Real optimisation problems arise when a system with buffered input is considered.  In 

such systems there can be multiple packets waiting on a single input line for various 

output lines as shown in Equation 39.  Requests for multiple connections can be seen in 

the left matrix and the unique optimal solution which maximises throughput on the 

right.  This request matrix proves useful for testing crossbar systems. 
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If the request values are made continuous it becomes possible to implement 

prioritisation strategies.  For example, if the range of request values lay between 0 and 2 

then a requested connection would be half active with a value of 1 and fully active with 

a value of 2.  Thus a packet whose weight was 2 would have an advantage over a packet 

whose weight was 1.  Indeed, request matrix values could be, for instance, between 0 

and 10 to represent the number of packets waiting for each connection.  As the number 

of packets waiting increased, so would the importance of the connection. 
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4.4.2 Neuron Interconnection 

The neural network described here has been theoretically derived from the Hopfield 

neural network [121], [130]-[131] but behaves similarly to a winner take all network.  It 

is a recurrent network in that it evolves to a stable state where neuron activation levels 

do not change any more.  Adapting the neural network to the assignment problem 

required redefinition of the updating rule and thereby the network interconnection 

structure.  Updating rules determine the next value that a neuron will take, with respect 

to time, based upon the previous outputs of other neurons.  Figure 53 shows the required 

interconnect structure graphically. 

Figure 53: Neural Network Interconnection 
Neural network mapped to a 5×5 element crossbar switch.  Neuron y22 receives inhibitory 
input from all other neurons in the same row and column. 

We can therefore define the network's updating rule: 
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where: 

• xij is the summation of all inputs to the neuron referenced by ij including the bias b. 

• iij determines whether a neuron referenced by ij is allowed to evolve. 

• λij is the time constant for the neuron referenced by ij. 

• wij is the synaptic weight for neuron input ij. 
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• yij is the output from a neuron referenced by ij. 

• A is the neuron optimisation value weighting input from any element in the same 

column. 

• B is the neuron optimisation value weighting input from any element in the same 

row. 

• b is the optimisation value representing an external bias supplied to each neuron. 

All inputs are summed by the neuron along with addition of the bias b to find xij.  The 

neuron's output yij can then be determined using a monotonic activation function ( )ijxf : 

 ( )
ijβxijij e

oo
oxfy −+

−
+==

1
minmax

min  Equation 41 

Here β is used to control the gain of the sigmoid function, a higher value resulting in a 

steeper transition, and omin and omax to determine the minimum and maximum output 

values for yij respectively.  The exact form of ( )ijxf  is not particularly important, 

indeed any appropriate non-linear monotonically increasing function could be used.  

The preferred embodiment is however the sigmoid function. 

To illustrate the operation of this updating rule we can use Figure 53.  Here the neuron 

marked with output 22y  has inputs from all the other neurons in the same row 

jj yw 22 ×−  and column 22 ii yw ×− .  The important point to note here is that the neural 

network operates in an inhibitory fashion thus any active input will inhibit 22y .  Note 

that the external bias b supplied to each neuron is excitatory. 

The idea behind this interconnection strategy is that any active neuron will try to turn all 

the others off, eventually resulting in only one of the requests remaining active in each 

row and column.  To demonstrate its ability to find an optimal solution, the example in 

Figure 53 needs to be extended slightly as shown in Equation 42: 
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The left matrix here represents a set of requested connections and the right its best case 

solution with y22 switched off.  Careful consideration leads us to conclude that the 

network must converge to the solution shown since both y24 and y42 are inhibiting y22 
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resulting in it being switched off before the others and essentially losing.  If y22 had won 

then it would have resulted in a poor solution since y24 and y42 would be inactive 

therefore not maximising potential throughput. 

It has been shown by Hopfield that with symmetric connections and a monotonically 

increasing activation function ( )xf , the dynamical system described by a neural 

network possesses a Lyapunov energy function [115] which continually decreases with 

time.  The existence of such a function guarantees that the system converges towards 

equilibrium, often referred to as a point attractor.  In any system with a continually 

reducing energy function there is always a risk that the system will become trapped in 

local minima.  In this system, local minima can be represented as a solution which 

satisfies the switching constraints but is not a global optimal solution.  This problem can 

be avoided by introducing noise and was done in initial mathematical modelling by 

perturbing β.  This alteration of the activation curve's gradient is significant enough to 

provide successful convergence to a global minimum.  However, the technique has 

proven necessary only in simulation as the optical and electronic systems used in both 

demonstrators provides sufficient intrinsic noise to ensure convergence to global 

minima. 

4.4.3 Determination of Optimisation Parameters 

The optimisation parameters A, B and b [132] have been determined purely by trial and 

error in previous work [133].  If these parameters are not chosen carefully then Equation 

40 will converge either slowly or not at all.  Indeed the system may even converge to an 

invalid solution. 

It is possible to determine limits for optimisation parameters methodically before using 

trial and error.  First, consider a solution for Equation 40 when the system is in 

equilibrium: 

 0=
dt

dxij  Equation 43 

This results in the equation: 
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where x0,ij is the value xij at equilibrium. 
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Further restricting the parameters, we know that in the final solution to the switching 

problem each neuron will settle to either zero or one.  Presuming that a valid solution 

has been found then there should be at most one active neuron for each row and column.  

This information allows us to establish that if ij is a zero position then the equilibrium 

condition becomes: 

 bBAx +−−=1  Equation 45 

where x1 denotes the first equilibrium solution.  However, we also know that since we 

are at equilibrium the associated y value must be close to zero and that y tends towards 

zero as x tends towards minus infinity.  Accordingly, we can rewrite Equation 45 as an 

inequality: 

 0<<+−− bBA  Equation 46 

This solution is referred to as the negative attractor.  There must be N2-N positions in 

the network satisfying this condition, presuming a square matrix of N2. 

The next consideration must be the ij positions which tend towards one.  Under 

equilibrium, the condition then becomes: 

 bx =2  Equation 47 

where x2 represents the second equilibrium solution.  Examining Equation 41 it can be 

seen that y tends to one as x tends to infinity.  This allows us to rewrite the second 

equilibrium solution as an inequality: 

 0>>b  Equation 48 

This is a positive attractor and has to be satisfied at N positions in the network. 

The final equilibrium conditions mean that N neurons in the network have converged to 

one of the two attractors and N2-N neurons to the other.  Combining Equations 46 and 

48 gives the overall inequality: 

 BAb +<<0  Equation 49 

This inequality can be refined since a symmetric matrix is desired where A=B: 

 Ab 20 <<  Equation 50 

This information has been used to simulate the perfect theoretical case in Matlab [139] 

enabling the determination of the significance of each optimisation parameter including 

the neuron's activation function.  Analysis of the model indicated that: 

• The value of β  should lie within the region 0.08 to 0.16 for optimal performance.  β  

is effectively linked to b in the following manner: 
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 1≈βb  Equation 51 

• The bias b should remain within the limits of 20 to 75 for optimal operation.  

Increasing the value of b encourages the neurons to choose quickly leading to sub-

optimal solutions. 

• Presuming that the network operates using a symmetric matrix, A should be at least 

ten times greater than b. 

A set of preferred values were discovered during simulation with A=1,250 and b=50.  

We can therefore use Equation 51 to calculate that β=0.02.  This value lies slightly out 

with the stated optimal range but does not prevent or hinder correct network operation.  

The longer decision times associated with lower values of b are justified due to 

improvements in quality of solution. 

4.4.4 Conclusion 

Simulation of the neural network proves that the algorithm can be mapped successfully 

on to a packet switch scheduler.  It has also underlined two important points: 

• Noise plays a significant role in the model.  As the noise level increases, the time 

taken for network stabilisation decreases.  Calculations indicate that an experimental 

implementation will receive enough background noise to stimulate convergence.  

However, when noise reaches unity the network becomes unstable and does not 

provide a valid or steady solution. 

• Network size plays an important role in convergence.  The larger it is the longer it 

takes to converge. 

What makes this system so interesting is its diversity with packet switch scheduling 

only one of many applications. 

4.5 Neural Network Hardware 

The neural network studied here is unique in that it contains optoelectronic components 

to provide the high degree of connectivity required and uses algorithms specially 

designed to exploit this additional connectivity.  This section examines the hardware 

used to create both first and second generation demonstrators discussing the limitations 

that directly influence network operation.  Abstracted hardware descriptions of both 

optical and electronic systems enable an understanding of further simulations examined 

later in the chapter. 
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4.5.1 Optical System 

In the optical domain, a DOE provides fixed and evenly weighted interconnection 

between the neurons in the system, as is required by the algorithm.  Increasing the size 

of the neural network requires an increase in DOE fan-out.  Increasing DOE fan-out 

decreases the signal incident on a detector with a consequent decrease in SNR.  

Achievable network size is therefore tightly bound to DOE fan-out.  The pattern of 

neurons inhibited by any given active neuron, two of which are shown in Figure 54, is 

shift invariant.  That is, the pattern remains the same relative to the position of the 

active neuron.  An electrical system would require a separate wiring network for each 

output leading to a quadratic increase in routing complexity as order increases.  Such 

intractability hinders the construction of neural networks as an application specific 

integrated circuit (ASIC).  Indeed, replacing the DOE with either a different DOE or a 

reconfigurable SLM allows the construction of many types of neural network. 

Figure 54: Neural Network Optical System 
Scalar domain DOE fans out inhibitory signal providing a shift invariant interconnect 
pattern as defined in section 4.4.2.  Neuron input summation is performed by measuring 
the total optical power incident on a detector. 

The far-field intensity profile generated by the DOE can be quantified using two 

parameters: the diffraction efficiency (TDOE) and the non-uniformity or reconstruction 

error (∆r).  The diffraction efficiency is the proportion of the incident light intensity 
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diffracted into the required orders and is typically around 60 to 70%.  The 

reconstruction error is a measure of the fidelity of the measured far-field intensity 

profile to the desired far-field intensity profile.  It is defined as: 
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where M is the desired set of diffraction orders, SDOE is the number of orders in M, Pij is 

the intensity in the ijth diffraction orders and TDOE  is the diffraction efficiency as a 

percentage.  The value of ∆r is dependent upon both the non-uniformity inherent in the 

design process and the additional non-uniformity added during fabrication.  The 

inherent reconstruction error is due to the non-bandwidth limited nature of the desired 

far-field intensity profile as well as the error introduced by quantisation of the phase 

profile [134].  Typically, this unavoidable error will be of the order of 0.1% provided 

that there is a sufficient space bandwidth product to specify the far-field intensity profile 

with reasonable accuracy [90].  The fabrication reconstruction error is introduced by a 

number of different mechanisms.  These are feature rounding and elimination during 

photolithographic transfer as shown in Figure 55, layer misalignment for multilevel 

phase profiles, etch depth inaccuracy and etch non-uniformity across the element. 

Figure 55: Photolithographic Transfer Error 
Features are rounded or even eliminated during transfer from the desired 
photolithographic pattern in (a) to actual DOE element in (b). 

The inter-layer alignment accuracy is of the order of 0.1µm with the etch depth 

inaccuracy being typically less than 1%.  Etch non-uniformity across the element is the 

least significant of all fabrication non-uniformity mechanisms and can generally be 

ignored for the scalar domain elements considered.  The overall effect of different non-

uniformity mechanisms is an additional reconstruction error of between 1% and 2% per 

mask level.  This means that a 16 phase level element which has 4 mask layers would 
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typically have between 4% and 8% reconstruction error after fabrication.  The DOE 

used in this demonstrator was designed to have a signal to noise ratio >10 and a 

fabricated element reconstruction error of <2%.  The optical system constrained DOE 

design such that some diffraction efficiency had to be sacrificed to ensure that the 

signal-to-noise ratio and reconstruction error criteria were satisfied.  The final efficiency 

of the binary DOE was 50% with a fabricated reconstruction error of 1.4%.  It contained 

32 rows of 32 trapezoids with a minimum feature size of 1.8µm and a total DOE period 

of 96µm. 

Experimental measurements of DOE output and associated reconstruction error were 

used to simulate the operation of the neural demonstrator for different sizes of network.  

By altering the total reconstruction error of the DOE and observing the variations in 

neural network operation, a measure of the scalability of the neural network can be 

gained from an optical viewpoint.  The operation of the different electronic subsystems 

was assumed to be noise free although this is not the case in practice.  Figure 56 shows 

the change in response of an N=8 network with increasing DOE reconstruction error.  

Each value of reconstruction error was simulated 10,000 times. 

Figure 56: Reconstruction Error 
Variation in neural network optimisation with DOE reconstruction error ∆r. 
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The network operates optimally when the number of neurons on is 8.  As the size of the 

reconstruction error increases, the probability that an optimal solution will be achieved 

is decreased.  Unacceptable reconstruction error is defined as the point at which the 

proportion of optimal test runs drops below 90% of the total number of test runs.  

Variation of this quantity with network size is shown in Figure 57. 

Figure 57: Maximum Allowable Non-Uniformity 
Extrapolation of variation of maximum allowable DOE non-uniformity.  If non-
uniformity exceeds the maximum for a given network size then solution optimality will 
be compromised. 

The solid line in Figure 57 is a fit to simulated discrete points allowing extrapolation of 

maximum non-uniformity for larger network sizes.  This line has the equation: 
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where u=3.288 and 435.1−=v .  Assuming that the minimum achievable reconstruction 

error in DOE fabrication is 1%, the maximum size of a neural network that can be 

implemented using this optical interconnection technology is N=30.  Currently both 

demonstrators use an N=8 fan-out element. 

Non-uniformity in the DOE is not normally considered to be noise since it does not 

affect the network in the same manner.  Assuming that system noise is approximately 

the same across all channels if time averaged to infinity, non-uniformity provides 

certain neurons with a distinct advantage over others due to their improved ability to 

inhibit.  Put succinctly, every neuron would not be equal. 
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4.5.2 Electronic System 

The first generation electronic system, of which a single channel from 48 is shown in 

Figure 58, used analogue components to approximate the neural network. 

Figure 58: Single Electronic Channel from the First Generation Neural Network 
Discrete electronic building blocks approximate the neural transfer function. 

Speed of convergence can be adjusted by altering resistive and capacitive component 

values in both high and low pass filters.  Adjustment of the transfer function is only 

possible by replacing electronic components, however component tolerances appeared 

to reduce solution optimality prompting a redesign of the electronic system. 

The second generation system shown in Figure 59 uses off-the-shelf digital signal 

processors to provide the neural transfer function which allows network operation to be 

reprogrammed to tackle new applications with minimal, if any, adjustment to hardware.  

Non-linearities in the system can be compensated for at system startup using calibration 

routines.  However, the most significant enhancement in this demonstrator is the ability 

to prioritise connection requests, a function ubiquitous in packet switch controllers. 

Figure 59: Single Electronic Channel from the Second Generation Neural Network 
One DSP handles 16 channels.  Its operation is modelled using a set of matrices to 
represent neuron states at specific stages.  The stages are indicated by PI, PM, PR and PO. 

The electronic system can be considered as consisting of five stages, each performing a 

specific task.  At the optical input end there is the detection system which converts a 
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current generated by incident light into a voltage of magnitude specified by the 

amplification of the transimpedance amplifier.  This is then converted by the second 

stage using an analogue-to-digital converter (ADC).  The third stage consists of a DSP 

[135] which takes the digital information and performs a transfer function on it based on 

previous and requested values.  The fourth stage consists of digital-to-analogue 

converters (DACs) that are fed the new activation levels from the DSP.  The fifth and 

final stage takes the voltages from the DAC and converts them into an appropriate drive 

current for the VCSELs thus returning the signal into the optical domain.  A single chip 

solution has been fabricated for stage five. 

4.6 Simulation and Results 

Simulation software was written that closely modelled the hardware system.  This 

allowed analysis of potential problems and the determination of hardware requirements 

with respect to accuracy, tolerable noise and efficiency.  This section outlines the 

simulator and discusses parameter limitations.  Hardware minimisation is illustrated that 

not only improves convergence times but significantly enhances scalability and network 

robustness. 

4.6.1 Simulator Algorithm 

The simulator divides the demonstrator up into four planes.  Each plane contains 

information about a neuron at a certain point and is therefore represented by a matrix of 

the same size as the neural network.  A single loop iteration is illustrated and, defining 

variables as we proceed, the computations required to move from one plane to the next 

are examined.  There are three stages in an iteration with all planes initially containing 

zero values, except for the request plane PR.  This plane specifies a set of requested 

connections and is sent to the DSP by an external controller.  If the value of a request is 

zero then a neuron cannot evolve and will never turn on.  The higher the value here, the 

more priority a neuron has.  Next there is the output plane PO which describes neuron 

output levels from stage 5 in Figure 59.  These levels are voltages quantised to the 

resolution of the DAC.  Their values reflect the current state of the neural network with 

a set of maxima and minima indicating network convergence.  The input plane PI 

measures the light input from the optical system and is a voltage level from stage 2 in 

Figure 59 quantised to the bit depth of the ADC.  Linearly distributed noise is added to 

this value representing both ADC quantisation error and optical system noise.  Every 
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neuron stores an internal value from the previous state.  This value is held in the 

memory plane PM and is a real number.  Figure 60 illustrates information flow between 

these planes in the simulation. 

Figure 60: Simulator Planes 
Simulator planes are interrelated by a predefined information flow. 

A single iteration is considered to be complete when computation returns to the starting 

point.  To illustrate the complexity involved, we will examine the computation required 

to complete a single iteration.  Starting from the memory plane, the first stage in an 

iteration is to calculate the new values for the output plane.  This is done using: 
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where Vomin specifies the voltage used to switch a VCSEL off, Vomax the voltage level 

when a VCSEL is fully on and β the gradient of the neuron's sigmoid activation 

function.  The output values in PO are quantised to QDAC bits thus representing the DAC. 

To calculate the input plane we require a temporary plane which we will call Ptemp.  This 

is used to determine the VCSEL optical output power presuming a linear relationship 

between minimum and maximum values: 
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where Pomin is the optical power generated by the VCSEL when Vomin is applied to the 

DAC and Pomax is the optical power generated by the VCSEL when Vomax is applied. 
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From this we can calculate the amount of power in each spot produced by the VCSELs 

presuming that the DOE distributes the incident optical power evenly: 
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Where SDOE is the number of spots created by the DOE symmetrical cross, calculated 

using ( )22 −+= nmSDOE , and TDOE is the percentage transmission of the DOE. 

Next, the total power incident on each detector needs to be calculated: 
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This power value can then be translated into a voltage using: 
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where Vimin is the minimum input voltage from the detectors produced when Pimin watts 

or less is incident and Vimax is the maximum input voltage from the detectors produced 

when Pimax watts or more is incident. 

Random noise from the system between N- and N+ is then added since the neural 

network thrives on noise and therefore it must be simulated.  The value used is 

generally ±½ least significant bit of QADC since this is normally larger than the optical 

noise.  Once noise has been added, the voltage held in PI is then quantised to QADC bits. 

The final stage in the loop is to calculate the new values in the memory plane PM.  This 

is performed using: 

 ( )BPAλPP
ijijij IijMM +×−+=  Equation 59 

where A is the neural network optimisation parameter, b is the neuron bias and λij a 

virtual time increment since the discrete system models an analogue one and therefore 

must have a time interval at which network weights are recalculated. 

Figure 61 shows neural network conversion in a sample simulation run.  Each trace 

represents the output from a single neuron.  The system parameters used reflect 

hardware construction for the second generation system where N=8.  The network 

optimisation parameters are A=1,250, b=50, β =0.02 and 30
1=ijλ  with request values 

ranging from 1 to 10.  The DACs output voltages from 0 to 5V at 8-bit resolution 

resulting in a VCSEL optical output power of between 0.1 and 1.5mW.  The DOE 
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creates a symmetrical cross with 28 inhibitory signals at 60% transmission.  Each 

detector therefore receives a signal ranging from 30 to 450µW of incident optical 

power.  This is converted back into a voltage between 0 and 5V at 8-bit ADC 

resolution.  Noise is present in this conversion and ranges from 10−  to +10mV. 

Figure 61: Neuron Evolution 
Monitoring the output plane allows us to determine if neural network convergence is 
complete.  It is clear that a stable decision has been reached after around 300 iterations. 

An important figure of merit is the number of iterations to convergence.  Figure 62 

plots 1,000 network convergence times. 

Figure 62: Iterations to Network Convergence 
Plot of convergence times for 1,000 random routing requests all with a load of 0.5625.  
The majority of tests indicated convergence in under 300 iterations.  These test runs did 
not produce any invalid switch configurations. 
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Iterations to convergence represents the number of complete system cycles required for 

the neural network to converge to a steady state and is essentially a measure of how fast 

the system can be run.  The distribution shown in Figure 62 indicates that a point 

attractor exists for the network as there is a skewed gaussian distribution around a 

median number of iterations as indicated by the bold red line.  There also appears to be 

a set of local minima clearly represented by rows of solutions at particular numbers of 

iterations. 

4.6.2 Simulator Results 

The first simulations performed examined the total number of iterations required for the 

network to converge given different request plane values PR.  Normally request values 

are set at 1 to allow a neuron to evolve or 0 to prevent it from evolving.  However, the 

addition of prioritisation requires the use of a range of values.  Simulation was used to 

establish the range of PR values that would allow evolution and their consequent effect 

on system performance.  Two studies were made - one on a lower triangular test matrix 

which has a single valid and optimal solution: 
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and one on a fully loaded network which has no distinct solution: 
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Figure 63 clearly illustrates that a completely loaded square network requires longer to 

converge than the more lightly loaded triangular one.  As expected, the error margin in a 

square request matrix is larger as it has no clearly defined attractor. 

It was discovered that if the value of the request is less than 1 then the network would 

not converge reliably.  From 1 to 10 there is continual improvement and beyond 10 

negligible performance difference. 
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Figure 63: Effect of PR on Iterations to Convergence 
Varying the magnitude of the request value has a similar impact on two differently loaded 
networks. 

Any discrete implementation has the exclusive parameter ijλ  that had not been 

optimised in previous work.  Therefore simulation was undertaken to find an optimal 

value.  It was discovered that to enable network convergence 08.0003.0 << ijλ  must 

hold true.  Outwith these limits the network does not provide a valid solution.  As can 

be seen in Figure 64, the best average conversion time that is not near limiting values, 

and therefore possibly unstable, is when 03.0=ijλ . 

Figure 64: Effect of λij on Iterations to Convergence 
Variation of digital simulation step size to find an optimal value.  This value is a time 
constant that approximates the analogue system. 
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The next aspect examined was network scalability.  Initially QADC=QDAC=8 thus 

modelling the preferred bit depth implementation.  As expected, the number of 

iterations to convergence scaled in a linear manner with network size N.  Based on 

current component tolerances, the upper maximum network size proved to be N=21, or 

441 neurons, as shown in Figure 65.  Degradation of solutions began after this point as 

the system started to produce invalid results.  These simulations were performed under 

full network load conditions. 

Figure 65: Effect of Network Size N on Iterations to Convergence with QDAC=8 
Scalability of an 8-bit system displays a linear increase in convergence time that is 
proportional to network size N. 

Apart from proof of principle, the goals of simulation were to minimise hardware and 

improve system performance.  Reduction of QDAC to 1, thus thresholding neural output, 

provided some interesting results.  It confirmed that a digitally driven system was not 

only feasible but that it improved both scalability and convergence times.  Simulation 

has shown that a network with QDAC=1 will scale up to N=63 or 3,969 neurons.  This is 

graphed in Figure 66 which also shows that the average number of iterations increases 

only slightly with network size.  However, at N=62 this number begins to increase 

dramatically with invalid results appearing at N=64 and beyond.  These simulations 

were again performed under full network load conditions. 
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Figure 66: Effect of Network Size N on Iterations to Convergence with QDAC=1 
Examination of the scalability of a digitally driven system shows that convergence time is 
not greatly effected by network size. 

Therefore removal of hardware complexity, in this case digital to analogue converters, 

improved both scalability and performance dramatically. 

To add a third dimension, both systems were also simulated under varying network load 

conditions.  This was started at no load and increased until all connections were 

requested.  The 8-bit network response is shown in Figure 67 and it copes reasonably 

well with the number of iterations required increasing in accordance to load, only falling 

off slightly under full load conditions. 

Figure 67: Effect of Load on Iterations to Convergence with QDAC=8 
Performance of an 8-bit driven N=8 network under varying load conditions. 
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The Average Neurons On axis details the number of neurons in an on state at 

convergence and is averaged from 1,000 test runs.  It is plotted against the secondary 

axis and is an indication of solution optimality. 

In comparison, a thresholded network copes particularly well as load increases.  Figure 

68 shows that the number of iterations required increases slowly and hardly breaches 

the 500 iterations mark even under maximum load.  Conversely, the 8-bit system has 

achieved this point when load reaches 0.4.  Indeed, no convergence time is ever less 

than 500 iterations if network load exceeds 0.7, even if outliers are included. 

Figure 68: Effect of Load on Iterations to Convergence with QDAC=1 
Performance of a digitally driven N=8 network under varying load conditions. 

The digital thresholded system outperforms an 8-bit one in all ways as far as 

convergence is concerned.  Unfortunately, speed of convergence and scalability is 

traded off against quality of solution.  Expanding the secondary axis in Figure 67 and 

Figure 68 to give Figure 69 shows that, on average, sub-optimal solutions were 

generated slightly more often by the digitally driven system than by the 8-bit one.  

Under the high load conditions shown in Figure 70, an 8-bit system gives a solution that 

is below optimal approximately 3% of the time whereas the digital system is below 

optimal about 9% ±1% of the time. 
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Figure 69: Comparison of Digital and Analogue Drivers 
Comparison of quality of solution between 1-bit and 8-bit systems. 

Figure 70: Comparison of Digital and Analogue Drivers (Expanded) 
Comparison of quality of solution between 1-bit and 8-bit systems under high load levels.  
The optimality of a 1-bit system solution is slightly below that of the 8-bit system. 

In a similar attempt to minimise input hardware, the minimum analogue to digital 

converter bit resolution QADC required to provide convergence was determined.  

Obviously digital input is not possible in this situation, as was verified during 

simulation, since there would only be one value of inhibitory input to a neuron and 

consequently no discrimination between single or multiple incident inputs.  Simulation 

involved varying the value of QADC and examining the number of iterations required for 
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convergence.  Some rather unexpected results were observed.  For example, a 6-bit 

ADC produced valid and optimal results beyond what was believed to be its limiting bit 

resolution and a 16-bit ADC managed to activate only a few neurons and did not 

produce near optimal solutions.  Additional noise was inserted into the 16-bit ADC 

system which resulted in it beginning to converge again.  Further simulation supported 

the following hypotheses: 

• If a system starts off balanced with a full request matrix, noise is an important factor 

for convergence.  As bit resolution increases, LSB noise decreases so the system will 

not converge within the maximum number of simulated iterations, in this case 5,000.  

Therefore the introduction of a lower resolution ADC adds sufficient noise to 

guarantee convergence regardless of optical system characteristics. 

• If a system starts off unbalanced such that there is a distinct solution or descent 

gradient then noise is no longer dominant.  Such systems are capable of converging 

with ADCs that do not have sufficient resolution to determine whether a single 

neuron is active.  This is because quantisation error pushes the reading into the 

discernable regime with a calculable probability.  As the descent gradient is in a well 

defined direction, this is sufficient to cause network conversion characterised by 

increasing convergence times and decreasing probability of error due to quantisation. 

These results are interesting in that they show that a digitally driven implementation can 

outperform an analogue-like 8-bit system and can be scaled to a considerably greater 

extent.  A digital implementation can be considered as essentially digitally thresholded 

neurons that are either on and winning or off and losing.  The reason that a digital 

system converges faster is that instead of gradually turning on, as the analogue system 

does, neurons switch from off to on in a single step.  This adds impetus to convergence 

but unfortunately also a hastiness that can lead to sub-optimal results more often than in 

the 8-bit case.  Nevertheless, the possible hardware savings by bypassing DACs and 

analogue VCSEL drivers for a more rapid decision and increased scalability are very 

tempting provided that a sub-optimal solution of N-1 neurons on can be tolerated less 

than 10% of the time under higher load conditions. 

The system's major speed limitation is processing power.  However, if the system were 

to use a hardware implemented transfer function then we could see its speed 

approaching 1GHz.  Given a digitally driven system at this frequency, a fully loaded 

N=8 neural network with defined convergence in a generous 400 cycles could produce 
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2.5 million solutions per second.  The impressive thing about this system is that we 

could scale up the size of the problem to N=60 and there would be no difference in the 

number of cycles required for the system to converge. 

Scalability is currently limited in 2001 by VCSEL array size.  Poor process technologies 

limit any system implementation to N=16 presuming the use of commercially available 

components.  This is closely followed by DOE non-uniformity which begins to 

influence solution optimality at N=30.  However, process technologies continually 

advance and as tolerances improve so will the maximum implementable network size. 

4.6.3 Scheduler Performance Comparison 

It is interesting to note that this neural solution when applied to the scheduling problem 

[127] can, in terms of switch cycles, outperform state-of-the-art digital solutions.  

Simulations of an N=16 neural network scheduler were undertaken in order to make 

performance comparisons with other scheduler designs.  The simulations were 

performed under uniform traffic conditions and the mean delay, measured in packet 

periods, was plotted against offered load which is the probability of a packet arriving at 

each input.  Figure 71 summarises the results of this exercise. 

Figure 71: Performance Comparison 
Comparison of neural network scheduler with a state-of-the-art scheduler iSLIP4.  The 
advantage of the neural network is clearly visible under high levels of load.  Output 
queuing is the theoretical optimal. 

The uppermost dotted curve shows the situation when the inputs are simply buffered in 

a first in first out (FIFO) fashion.  FIFO queues suffer from the problem of head of line 

(HOL) blocking in that if the foremost packet in the queue is blocked by another 
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request, it also blocks all the packets behind it even if their destinations are not in 

contention.  As might be expected, a scheduler based on FIFO buffering suffers severe 

performance degradation under increasing load.  The lowest dashed curve represents the 

theoretical best that can be achieved.  This is described as output queuing and is 

calculated assuming an ideal, and infeasible, switch fabric where packets have only to 

wait for a vacant slot on the output line.  The solid line represents an algorithm called 

iSLIP4 [136] which could be implemented in CMOS electronics for a high speed switch 

of this size.  The line drawn through a series of simulated points shows the neural 

network scheduler performance and its favourable throughput at loads from 0.7 

upwards. 

Although our current hardware is not built for the high speed of an individual switch 

cycle, this is purely due to our system being designed as proof of principle.  Indeed, the 

simplicity of the system is such that extremely high speed versions of the hardware are 

easily conceivable.  These facts, combined with encouraging results on the scalability of 

a digital system, shows that a neural network with an optoelectronic interconnect will 

provide an excellent solution to the packet switch control problem or indeed to any 

variation on the quadratic assignment problem. 

4.7 Conclusions 

This chapter has examined the issues that currently limit conventional sequential and 

parallel architectures and has shown how neural networks combine many simple 

processing elements in a highly interconnected manner thus providing a connectionist 

approach to problem solving.  A neural network has been mapped to a common 

variation on the quadratic assignment problem found in packet switch schedulers and 

solution optimality demonstrated which exceeds that of conventional algorithms, 

approaching theoretical optimal under extreme load.  Hardware minimisation has been 

demonstrated that not only removes system complexity but introduces both performance 

and scalability to an algorithm normally intractable to scale.  Regardless of whether the 

system is just N=2 or a massive N=60 it will still require the same computation time.  

However, the key to this unprecedented scalability lies with optics as it is not feasible to 

implement in electronics due to a quadratic increase in interconnection requirements. 

Optics enables this system and puts within reach a viable alternative to linear 

programming techniques.  The system examined here can essentially be used to solve 
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any quadratic assignment problem where time is of the essence.  Its ability to handle 

larger order problems without serious performance degradation emphasises the 

contribution that such systems could make to the field of highly parallel computing. 
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5 Neural Network Demonstrators 

This chapter will examine the strengths and weaknesses of two generations of the neural 

network demonstrator.  It considers system construction, nuances, limitations and 

performance.  The design decisions behind the second generation demonstrator are 

outlined in detail and performance assessments are made comparing it with previous 

hardware neural networks.  Note that algorithmic and application issues for both neural 

networks are discussed in chapter 4, with which this chapter presumes familiarity. 

5.1 First Generation Neural Network 

The first generation demonstrator [137]-[139] was constructed as a discrete component 

analogy of the neural network model.  Although the system served as an initial proof of 

principle, the author was not involved in the initial stages of specification and 

construction.  Therefore this section provides an overview, examination of 

implementation issues and series of results but does not include detailed design 

specifications. 

A simplified overview of both demonstrators with regard to functionality and 

information flow was presented in section 4.5.  This divided the demonstrators into two 

distinct systems, optical and electronic, a simplification which will again be used to 

address complexity. 

Although the first generation demonstrator used optical components capable of 

implementing an N=8 system, only 48 neurons were actually employed due to 

interfacing constraints.  Therefore, this neural network is considered to be a 6×8 system. 

5.1.1 Optical System 

Given certain intrinsic values and basic lens formulae, the optical system dimensions 

can be calculated.  These intrinsic values consist of overall system magnification and 

DOE working distance.  They were considered intrinsic as their alteration requires the 

replacement of either VCSEL array, DOE or detector array.  Modelling was performed 

using Matlab V4.2.1c which was given these intrinsic values and a set of available lens 

sizes with differing focal lengths. 

This system relies heavily on the properties of the DOE which splits up incoming light 

and diffracts it on to the appropriate detectors.  For optimal results from the DOE, 
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incoming light must be nearly, but not quite, collimated.  However, each VCSEL has a 

divergence of approximately 8°, thus requiring collimation.  In addition, if the 250µm 

spaced VCSEL array is to be focussed onto the 1.5mm spaced detector array, a 

magnification of ×6 is required.  Therefore, the lens system must perform collimation 

before the DOE and magnification after. 

The Matlab simulation produced hundreds of values on each test pass as component 

positions were gradually varied.  A metric was required to grade each result which 

would represent both overall optical system size d and beam divergence through the 

DOE.  As system size was considered more important than beam divergence, it was 

given twice the weight in the metric.  Thus, the quality of any valid solution could be 

estimated while the program exhaustively tried different lens combinations and 

positions. 

Given a maximum optical system size of 1,000mm, 5mm as the minimum distance 

between components and a maximum deviation of ±50% of f1 between VCSEL and lens 

1, the dimensions shown in Figure 72 were calculated as optimal given that only lenses 

of specific sizes were available. 

Figure 72: First Generation Optical System 
The components in this diagram are scaled relative to each other and to the overall system 
size.  Distance d is measured from the VCSEL array on the left at d=0mm.  The detector 
array on the right is at d=283mm which is the overall system size.  Data flows optically 
from left to right.  Lens focal lengths are represented by fx where x is the lens number. 

The final system has an overall size of 283mm and magnification of ×6.  Subsequent 

implementation and alignment proved this to be a valid solution. 

The VCSEL array used in the first generation system is a Lase-Array SN 2640 [140].  It 

has 64 VCSELs in an 8×8 configuration operating at gλ1 =760nm.  The array's optical 

output power has been profiled and the results are shown in Figure 73. 
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Figure 73: Lase-Array SN 2640 VCSEL Optical Output Power Characteristics 
Optical power generated through application of a current.  This diagram shows minimum 
and maximum optical output powers sampled across all 64 VCSEL elements. 

Unfortunately, there is a large optical power variance across the array.  However, as the 

gradient of slope remains constant, the addition of a current offset will allow for the 

calibration of individual VCSELs.  Current to voltage curves are an important 

characteristic when designing driver circuitry and can be seen for this array in Figure 

74. 

Figure 74: Lase-Array SN 2640 VCSEL Current to Voltage Characteristics 
Voltage developed across VCSEL through application of a current.  Minimum and 
maximum values generated by sampling across all 64 elements in the array. 
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The current to voltage characteristics of each VCSEL across the array are comparable 

and, according to Ohms law, have a similar resistance.  This similarity is desirable as 

any variance adds another parameter that needs to be taken into account during system 

design and construction. 

An issue which became apparent during the latter stages of the project was sensitivity of 

the VCSEL array to ambient temperature, as shown in Figure 75.  This was noticed as 

the VCSEL array was originally profiled in a distinctly colder environment than that in 

which it was operated.  Previously profiled output powers no longer matched those 

measured during construction and alignment leading to a complete recalibration of the 

array. 

Figure 75: VCSEL Array Temperature Stability 
The Lase-Array SN 2640 proved sensitive to ambient temperature.  VCSEL responses are 
plotted for both low and high ambient temperatures to illustrate how drastic this variance 
is. 

Any rise in temperature decreases a VCSEL's threshold current and increases its power 

output gradient.  This variation, both in absolute terms and particularly in distribution 

across the array, provides one source of noise to aid convergence.  However, the 

response displayed by each VCSEL to any change in temperature is similar but not 

identical to that observed in others. 

Repositioning the VCSEL array with relation to lens 1 alters focussing on the image 

plane.  To maintain a sharp image and thereby minimise an order's spot size, the 
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VCSEL array must remain at the focal point of lens 1.  Therefore, relative displacement 

must be approximately equal to f1. 

The massively parallel interconnection seen in this system is enabled by the DOE where 

the pattern generated matches the inhibitory interconnect patterns derived in chapter 4.  

Figure 76 shows the interconnect patterns required to implement the crossbar packet 

switch scheduler (a) and the Banyan scheduler (b).  Note that the additional orders in the 

Banyan network interconnect represent the internally blocking connections which must 

be inhibited. 

Figure 76: Diffractive Optic Element Interconnect Pattern 
Each spot represents an order.  Since this is a two dimensional pattern, each order must be 
classified in both x and y directions with the centre of the pattern representing the origin.  
Both patterns are specifically designed for an N=8 system.  

The pattern of orders is classified depending on spatial position where the x axis is the 

horizontal axis viewed at the detector array and y the vertical.  The origin of both axes is 

found at the centre of the pattern and would be the position at which the VCSEL would 

be imaged if the DOE were to be removed. 

To minimise reconstruction error ∆r, a binary process was used to fabricate the DOE.  

Figure 77(a) shows the e-beam mask used to etch the DOE on a fused silica substrate 

where the reactive ion used for etching was CHF3.  This process produces sharp vertical 

etches without undercutting and a uniformity of etch depth, and correspondingly phase, 

of 0.5% to 1% over the entire 25mm element.  However, as the feature size in this 

element was approaching the minimum resolvable, rounding was observed in the 

fabricated element as seen in Figure 77(b). 
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Figure 77: Diffractive Optic Element Phase Profile 
Part (a) shows the theoretical phase profile where white represents no phase shift and 
black a 90º phase shift.  Part (b) is an image of the fabricated element where the dark blue 
lines represent the changing phase shift. 

If this system is correctly aligned it should exhibit the behaviour shown in Figure 78.  

Theoretically, crosses created by 4 VCSELs incident on a DOE should overlap perfectly 

with no spots lying on the grid lines between detectors. 

Figure 78: Optical System Alignment 
Part (a) illustrates four VCSEL channels diffracted onto the detector array.  Part (b) 
shows this pattern implemented in the aligned system.  Although image quality is poor, 
the pattern can be distinctly seen. 

The DOE's position was found to be extremely sensitive to change, including rotation.  

Movement away from lens 1 resulted in an increasing number of visible orders between 
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two different VCSELs' zero order positions.  Rotation of the DOE on any axis will also 

alter the projected image.  Probably the most useful is in plane rotation which rotates 

the interconnect pattern projected by a VCSEL around its own origin.  Such movement 

does not rotate the position of the origin in relation to other origins. 

After fabrication, DOE transmission efficiency TDOE and array non-uniformity ∆r were 

measured and can be seen in Table 4.  Previous calculations indicate that the non-

uniformity seen in the crossbar DOE is sufficient only for systems of N<7.  Its use in the 

current system does not prevent operation but will compromise solution optimality. 

DOE TDOE (%) ∆r  (%) 

Crossbar Switch 60.0 4.7 

Banyan Switch 60.0 2.9 

Table 4: First Generation DOE Efficiency and Non-Uniformity 
Non-uniformities across both elements are reasonable but not sufficient in the crossbar 
element to guarantee optimality. 

The power in each spot on both x and y axes was profiled for the crossbar DOE to help 

assess the magnitude of any potential problem and can be seen in Figure 79. 

Figure 79: First Generation Diffractive Optic Element Profile 
Measured optical power in each spot given a total input power of 300µW ±25µW. 
Measurements are normalised against the zero order and averaged over six sample cases. 
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This graph shows an average value.  It can be clearly seen that most of the orders are 

reasonably stable at around 20 times the magnitude of the zero order, except for in the 

horizontal x direction where x=5 and x=6 prove consistently low.  This has been traced 

to a fabrication error in this version of the DOE.  Unfortunately, these measurements are 

subject to many sources of error ranging from imprecision in VCSEL and driver output 

to detector and transimpedance amplifier non-linearity.  The errors were reduced by 

sampling using a different set of devices each time, normalising the results with the zero 

order and then averaging.  The combined error is approximately ±0.7µW per spot. 

The photodiode detector array used in both first and second generation neural network 

demonstrators was a Centronic MD100-5T, as shown in Figure 80, and consisted of an 

array of 10×10 individually addressable photodiodes.  The first generation demonstrator 

did not use every element in the array so only the central 6 rows and 8 columns were 

actually employed. 

Figure 80: 10×10 Centronic MD100-5T Photodiode Array 
All dimensions indicated are in millimetres.  Each photodiode is spaced from any other 
adjacent photodiode by a inactive region of 0.1mm as shown in part (b). 

The centre of each neighbouring photodiode is spaced by 1.5mm, 0.1mm of which is 

inactive and used to distinguish adjacent detectors.  The detectors are relatively large 
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which could potentially cause capacitive problems thus limiting the overall speed of 

operation, in this case to 100MHz.  However, the ease of alignment brought about by 

using larger detectors more than compensates for this rather generous limitation given 

that the system is primarily a demonstrator.  Table 5 shows the characteristics of the 

detector array with responsivity over its entire spectrum in Figure 81.  The operating 

wavelengths of both first gλ1  and second gλ2  generation systems are indicated. 

Parameter Value Parameter Value 

Elements 10×10 NEP at 436nm ( 2
1-WHz ) 4.15×10-14 

Width (mm) 1.4 Length (mm) 1.4 

Area (mm2) 1.96 Separation (mm) 0.1 

Typ. Shunt Res. (MΩ) 400 Min. Shunt Res. (MΩ) 1 

Max. Unbiased Cap. (pF) 55 Max. 12V Biased Cap. (pF) 12 

Max. Dark Current (nA) 200 Min. Dark Current (nA) 1 

Max. Resp. 760nm (AW-1) 0.455 Min. Resp. 760nm (AW-1) 0.430 

Max. Resp. 956nm (AW-1) 0.360 Min. Resp. 956nm (AW-1) 0.310 

Table 5: Centronic MD100-5T Photodiode Array Characteristics 

Figure 81: Centronic MD100-5T Spectral Response 
Reverse biasing improves responsivity in the NIR range.  The operating wavelengths with 
respect to configuration are indicated for both first and second generation demonstrators. 
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The detector array is made of Si which has a bandgap of 1.12eV, thus only responding 

to wavelengths of ~1.1µm or less.  It is enhanced to operate well at the blue end of the 

spectrum but this does not preclude operation at NIR wavelengths.  Reverse biasing the 

photodiode slightly improves NIR responsivity, a technique used in the first generation 

demonstrator but not the second. 

A diffracted image of the VCSEL array is focussed at a specific distance from lens 2 

and this must also be the position of the detector array.  Movement of lens 2 with 

relation to lens 1 allows alteration of the image size on the detector array. 

5.1.2 Electronic System 

In the first implementation, each of the 48 neurons has an input photodiode detector 

followed by a capacitor-coupled inverting amplifier chain and low-pass filter, the output 

of which drives a VCSEL.  Figure 82 shows the electronic modular layout and Table 6 

the associated component values. 

Figure 82: First Generation Electronic System Circuit Diagram 
Electronic layout of a single neural channel, 48 of which exist in the completed system. 
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Component Value Component Value 

Resistor R1 100Ω Resistor R2 100kΩ 

Resistor R3 470Ω Resistor R4 1kΩ 

Resistor R5 3.3kΩ Resistor R6 100kΩ 

Resistor R7 100kΩ Resistor R8 100kΩ 

Resistor R9 470Ω Resistor R10 1kΩ 

Variable Resistor VR1 500Ω Variable Resistor VR2 1kΩ 

Capacitor C1 47pF Capacitor C2 10nF 

Table 6: First Generation System Component Values 
Component types and values specifically for Figure 82. 

The electronic system is divided up over different boards with images of the two most 

important shown in Figure 83.  The first stage is the amplifier board which is designed 

to amplify the detector input and integrates a high pass filter to remove any DC 

component.  The second stage is the neural network board which provides neural 

functionality in the system. 

Figure 83: First Generation Electronic System Images 
Images of discrete component circuit boards, each board supporting 48 neural channels.  
Left is the amplifier board, right the neural network. 
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Before testing could commence, it was also necessary to calibrate the neural network 

board.  However, the first task was to set up the correct reference voltages as shown in 

Table 7.  These voltages had been previously calculated in [138] and promote evolution 

as predicted during simulation. 

Reference Voltage Value Error 

Vstart 5.01V ±0.001V 

Vref 0.75V ±0.150V 

Voff 3.92V ±0.001V 

Table 7: Reference Voltages 
These reference voltages define neuron behaviour.  Incorrect values can compromise 
solution quality or prevent network convergence altogether. 

The next step was to calibrate all VCSELs using the available optical output power 

versus drive current data.  A square wave with a frequency of 0.5Hz was applied to the 

channel under adjustment so that the full range of neuron input voltages was swept.  By 

observing the drive current, minimum and maximum values were determined thus 

allowing adjustment of the variable resistors VR1 and VR2 to give an appropriate output 

power.  These powers were deemed to be 0.05mW representing an off state and 0.8mW 

designating on.  This method of testing also had the advantage that the electrical 

circuitry for each neuron was simultaneously tested.  Before VCSEL calibration, it was 

ensured that both variable resistors were at absolute minimum power out.  Even though 

such precautions were taken, damage to previously working VCSELs became apparent 

during the calibration process.  This was traced to both a hardware fault and the idling 

of the neural network card at V5−  when disconnected from the amplifier board.  

Application of a negative potential to a VCSEL can cause permanent damage or 

complete failure if it exceeds V2~ − .  Avoidance of this situation prevented further 

damage to any more VCSELs. 

Calibration revealed that ten VCSEL elements had failed along with two detectors.  

Channels with failed VCSELs were set to minimum current drain so that unnecessary 

power was not drawn.  During testing, the channels with failed VCSELs or failed 

detectors were not used.  The reason for detector failure is not clear, however the array 

was integrated with amplification circuitry which was believed to be the problem.  
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Three other channels had malfunctioning components which were located and replaced 

allowing channel recalibration. 

Optical alignment was again checked to ensure accuracy.  It was found that the total 

optical power present was too high, but instead of recalibrating every part of the system 

a beam splitter was inserted.  Useable channels were chosen at random and their output 

examined.  It rapidly became clear that certain neurons exhibited unexpected priority 

over others.  Re-examination of the system flagged that the VCSELs were not correctly 

calibrated and switching on certain VCSELs induced a photocurrent twice that of 

others.  This threw the accuracy of the initial calibration data into question.  The optical 

power from a random set of VCSELs was again measured and found to exhibit 

considerable variance.  Two sample measurements taken showed that one VCSEL 

produced 1.29mW while another produced 2.19mW.  Both of these channels were 

supposedly calibrated at 0.8mW and such powers were beyond safe operational limits. 

It was at this point that VCSEL sensitivity to ambient temperature was discovered, as 

shown previously in Figure 75.  The calibration data used was taken in a low ambient 

temperature environment however the high ambient temperature now present meant that 

the array had to be re-profiled and recalibrated before any further results were taken. 

During testing it became apparent that Vref plays a critical role in network convergence.  

Its value had to be adjusted to that shown in Table 7 and had to remain within the 

tolerance shown as the error.  Due to issues with component tolerances, namely the 

DOE, no universal value was found that provided a completely optimal solution under 

all circumstances.  Fine adjustment was required occasionally to improve solution 

quality. 

5.1.3 Results 

After recalibration of the VCSELs, a set of fully operational channels was chosen which 

had similar characteristics.  Six request matrices were generated randomly, as shown by 

the next six equations, and results obtained by allowing the system to evolve to a steady 

state. 
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Each request matrix was run 10,000 times with the scheduler never once producing an 

invalid switch configuration.  The results for the crossbar switch can be seen in Figure 

84.  DOE non-uniformity was not sufficient to ensure continually optimal results and 

indeed the results for trial run request matrices 1 to 4 are close to those predicted in 

Figure 56.  For trial run request matrices 5 and 6 almost all results proved to be optimal.  

This indicated that these matrices have a distinct solution thus limiting the effects of 

non-uniformity. 

Figure 84: Crossbar Switch Results 
Optimal number of neurons on in all trial run cases is 6. 

In the Banyan switch controller, DOE non-uniformity was adequate and provided the 

results shown in Figure 85.  Trials 2, 4 and 5 ran optimally the vast majority of the time, 

however, trial 3 continually settled on 5 neurons rather than the optimal 6.  This 

behaviour indicates the presence of a local minima suggesting that overall system noise 

was not sufficient.  Note that system noise should not be confused with non-uniformity 

as noise is an evenly distributed time random factor rather than a constant difference in 

a particular neuron's characteristics. 



Neural Network Demonstrators 

116 

Figure 85: Banyan Switch Results 
Optimal number of neurons on in all trial run cases is 6. 

No attempt has been made to optimise demonstrator performance.  Decision times are 

determined by the time constant of the low-pass filter tlpf : 

 25CRtlpf =  Equation 68 

which in this case was 33µs.  Through reduction of this time constant it should be 

possible to obtain a decision in tens of nanoseconds using only off-the-shelf electronics, 

thus achieving scheduling decisions at a rate compatible with the latest router 

requirements. 

5.1.4 Conclusion 

The first generation system successfully demonstrated the feasibility of an 

optoelectronic neural network, however any subsequent design will require a redesign 

of the electronic system.  Issues in the electronic system were not helped by optical 

component non-linearities in VCSEL, DOE and detector arrays.  There was insufficient 

configurability in the demonstrator to compensate adequately.  Nevertheless, this 

system showed potential in its implemented form but the inability to support 

prioritisation due to a discrete controller, essential in any modern day packet switched 

network, will prove debilitating. 
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5.2 Neural Network Hardware Analysis 

The first generation demonstrator exhibited a number of problems which are solvable if 

thought is given to the next generation demonstrator.  Any subsequent system should 

incorporate sufficient flexibility to solve other assignment problems by allowing rapid 

reconfiguration and enable optical component calibration to improve uniformity.  

Prioritisation support is essential and a performance on a par with both commercial and 

research neural networks is mandatory.  Bearing these points in mind, this section 

defines neural network performance metrics, evaluates existing neural networks and 

compares and contrasts them against the second generation neural network.  It 

concludes by assessing implementation strategies for the next demonstrator. 

5.2.1 Neural System Classification 

There are many ways of classifying a neural network be it through architecture, network 

type, the number of external inputs and outputs it has or its number of neurons.  

However, to evaluate performance this thesis will use the accepted metric of 

connections per second (CPS) as defined by Holler in 1991 [141]. 

A connection is defined as the calculation of the product of a synaptic input and its 

associated weight.  It is the basic unit of computation in a neural network and the 

number of connections executed every second is a measurement of its performance.  

Thus CPS is directly related to how fast a network can perform mappings from inputs to 

outputs.  This rating does not include the calculation time incurred during neuron 

summation and consequent application of the transfer function as both of these must 

have occurred before any other connections can take place.  Such performance metrics 

are useful in that they set a target for the demonstrator. 

Hardware neural networks tend to be classified into one of three categories: digital, 

analogue or hybrid.  A digital neural network is a complete digitalisation of the system 

with all internal parameters stored and calculated digitally.  Although digital summation 

can be relatively slow, especially with regard to synapses, it is an extremely flexible 

technology with mature fabrication processes.  Table 8 summarises a few digital neural 

networks and quotes their performance. 
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Digital Network Architecture Neurons Synapses Ref. CPS 

NeuraLogix NLX-420 FF, ML 16 Off-Chip [142] 300 

HNC 100-NAP SIMD, FP 100 PE 
512K Off-

Chip 
- 250×106 

Hitachi WSI 
SIMD, 

Hopfield 
576 32K [143] 138×106 

Inova N64000 SIMD, Int. 64 PE 128K 
[144]-

[145] 
870×106 

MCE MT19003 FF, ML 8 Off-Chip [146] 32×106 

Micro Devices MD FF, ML 1 PE 8 [147] 8.9×106 

Philips Lneuro-1 FF, ML 16 PE 64 [148] 26×106 

Siemens MA-16 Matrix Ops. 16 PE 256 
[149]-

[150] 
400×106 

Table 8: Digital Neural Networks 
Examples of digital neural network hardware as of December 1998.  Abbreviations can 
be found in the glossary on page 180. 

The second type of neural network hardware is analogue which exploits physical 

properties to perform operations thereby obtaining high performance and integration 

densities.  For example, in a current based analogue system a common electrical line 

could sum the currents from several synapses to give the neuron's input.  However, the 

major problem with such systems tends to be component tolerances as they can be nigh 

impossible to compensate for during manufacture.  Such problems were noticeable in 

the first generation neural network demonstrator.  For this reason analogue neural 

networks are a rare breed with only one network shown in Table 9. 

Analogue Network Architecture Neurons Synapses Ref. CPS 

Intel ETANN FF, ML 64 10,280 [151] 2×109 

Table 9: Analogue Neural Networks 
Examples of analogue neural network hardware as of December 1998.  Abbreviations can 
be found in the glossary on page 180. 
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The hybrid implementation was created by taking the best characteristics from both 

analogue and digital systems.  It combines the summation potential of analogue with the 

noise resistance of digital.  Table 10 shows a few hybrid neural networks and quotes 

their performance. 

Hybrid Network Architecture Neurons Synapses Ref. CPS 

AT&T ANNA FF, ML 16-256 4,096 [152] 2.1×109 

Bellcore CLNN-32 Boltzmann 32 992 [153] 100×106 

Mesa Research 

Neuroclassifier 
FF, ML 6 426 [154] 21×109 

Ricoh RN-200 FF, ML 16 256 [155] 3×109 

Table 10: Hybrid Neural Networks 
Examples of hybrid neural network hardware as of December 1998.  Abbreviations can 
be found in the glossary on page 180. 

Hybrid systems achieve the highest level of performance among all types of hardware 

neural networks.  Systems with a performance of 21×109 CPS have been demonstrated 

by Mesa Research [154].  The second generation neural network demonstrator described 

in this thesis adopts a hybrid approach. 

It is also possible to implement neural networks using alternative methods.  This usually 

involves a generic processor such as a Transputer, an Intel i860 or a DSP which 

simulates the network and its interconnects purely in software.  However, such systems 

are not examined here as they are not strictly hardware neural networks, rather software 

ones. 

5.2.2 System Performance 

To compare the performance of the crossbar switch neural network to that of existing 

networks, its CPS rating must be calculated with relation to iteration frequency and 

network size.  Given that sufficient hardware is available to correctly interconnect the 

system, we can define its connection density Cdn in terms of the number of inputs m and 

outputs n: 

 ( )2−+= nmmnCdn  Equation 69 
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The resulting number of connections with respect to number of inputs and outputs is 

graphed in Figure 86. 

Figure 86: Neural Network Connection Density 
Growth in network interconnectivity of the crossbar switch neural network scheduler. 

Once the number of connections have been calculated, the neural network's CPS rating 

can be determined given frequency of iterations fit in Hz.  Note that this value is not 

directly related to solutions per second as network convergence requires multiple 

iterations.  The following relationship can be derived for a square network where 

N=m=n: 

 ( )222 −= NNfCPS it  Equation 70 

This can be graphed as shown in Figure 87. 
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Figure 87: Neural Network Performance 
The CPS rating increases quadratically with network size N.  This increase is linear when 
related to iterations per second fit. 

A square neural network enables optimum use of the crossbar switch since a full set of 

inputs m can be simultaneously connected to a full set of outputs n, assuming m>n.  If 

this were not the case, then a situation would inevitably arise where certain inputs 

cannot be connected to any output as all existing lines are busy. 

These calculations allow determination of the performance of the second generation 

neural network demonstrator.  At the time of writing, the network is of order N=8, 

however the iteration frequency fit was not determined in the initial specification.  It is 

hoped that values from 100kHz up to perhaps 2.0MHz would be possible in the first 

instance giving respective ratings of 89.6×106 CPS and 1.08×109 CPS.  Although not as 

fast as some neural systems in section 5.2.1, the comparison is favourable and indicates 

a relatively high performance. 

However, the crossbar switch interconnect is only partial and if the interconnect pattern 

were altered to accommodate a fully interconnected Hopfield network [121] then the 

CPS rating could be determined using: 

 ( )24 NNfCPS it −=  Equation 71 

This would give a performance of 403×106 CPS at 100kHz and 8.06×109 CPS at 

2.0MHz.  Given such low operational speeds and only 64 neurons, these performance 

ratings carry considerable weight. 
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5.2.3 Second Generation Implementation 

Since there is a predefined optical solution, the only unspecified aspect of the 

demonstrator is the electronic neural network.  This section compares and contrasts the 

aspects of implementation in either a digital or analogue manner, thus highlighting the 

design decisions behind the second generation neural network demonstrator. 

Implementation using solely analogue electronics would mean that the entire system 

would be classified as an analogue one, as was the first generation.  The simplest, and 

cheapest, solution is to use an operational amplifier chain to act as neurons.  Such an 

analogue implementation is advantageous as digital systems require a higher transistor 

count to perform the equivalent analogue function.  In addition, analogue systems 

usually offer better performance at lower cost for approximately the same functionality.  

However, component tolerances are critical and have already proven to be a problem in 

the first generation demonstrator.  Network convergence is highly dependent on the 

analogue component values used, thus correct hardware design becomes tricky.  This 

also results in a lack of flexibility.  Once designed and built, it is hard to alter any 

system parameters.  Nevertheless, this problem could be circumnavigated through the 

use of components such as the electrically programmable analogue circuit (EPAC). 

Since there is already an analogue component in the form of the optical system, adding 

any digital hardware would change its classification to hybrid.  Although integration of 

digital components may sound out of place, the benefits they bring far outweigh the 

drawbacks.  Unfortunately, the problem with any digital neural implementation is 

conversion from analogue to digital at the input and digital to analogue at the output.  

This can not only be slow but can require expensive components. 

After careful consideration, it was decided that a microprocessor solution was 

promising for a range of reasons.  These include that since such systems are usually a 

plug-in solution, electronic design can be kept to a minimum.  Their flexibility also 

allows a neuron's activation function to be reconfigured to anything that can be 

programmed.  In addition, a microprocessor is capable of judging when the network has 

converged, therefore the result can be output when the system is finished rather than 

after a predefined period of time that could be either insufficient or excessive.  Look-up 

tables can be used for system calibration allowing the microprocessor to adjust a 

VCSEL’s output until it reached a predefined level on the photodiode.  This would 

prevent saturation of the photodiode and enable active calibration.  In a similar manner, 
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alignment also becomes active as a microprocessor could examine the light intensities 

falling on a range of detectors to ensure that light is only present on nominated active 

channels and not on neighbouring ones.  For evaluation purposes, a microprocessor 

could replicate characteristics from another proposed implementation or simulate a fault 

to assess tolerance in the current system.  Finally, workload could be divided across 

multiple processors to allow ease of scaling, an issue eased by the fact that the number 

of calculations per iteration is directly proportional to the number of neurons. 

However, a microprocessor solution does have its drawbacks.  Digital to analogue 

conversion can be slow without expensive hardware, but this would not be an issue in 

the hardware minimised neural network as the neural outputs are digitally thresholded.  

Multiple processors would also be required to prevent bottlenecking.  Unfortunately, 

multiple processors increase both hardware size and cost, thereby rapidly limiting any 

implementation.  However, this problem could be circumvented by constructing a 

SIMD type architecture. 

Interfacing of the neural network must also be carefully considered.  There are three 

interface points that must be examined regardless of system design. 

Firstly, there is the interface between the detector array and electronic neural network.  

If an analogue neural network is implemented then this is not an issue.  However, if it is 

digital then analogue to digital conversion of N2 channels will be required.  This can be 

performed using multiplexed components but would result in serial processing of 

parallel data. 

Secondly, between the electronic neural network and its controller, such as a PC.  

Presuming that any system built will not just support binary requests, an analogue 

electronic neural network requires digital to analogue conversion from the PC and 

potentially during the return of solutions.  A digital network would minimise this 

problem with microprocessors capable of direct connection to a PC's communications 

ports. 

Third and finally, there is the interface from the electronic neural network to the 

VCSEL array.  All 64 VCSELs need to be driven by the neural network.  An analogue 

network would not prove difficult to interface but, again, a digital network would.  

Digital to analogue conversion would clearly be required, which can be slow and could 

result in the multiplexing of several channels.  However, minimisation of the neural 
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network algorithm has verified that in this case direct digital driving of the VCSELs 

provides not only a viable but beneficial alternative interface. 

Implementing an analogue solution at this stage would have been taking a leap towards 

a project goal without necessarily understanding the problem completely.  Since it is a 

demonstrator that was being designed, flexibility is of the utmost importance.  This 

encompasses the ability to alter network configuration, activation functions and to 

compensate for component tolerances.  As an analogue demonstrator had already been 

successfully constructed, it was concluded that a hybrid system using microprocessor 

hardware should be next.  Simulation has already shown that such a system with 

appropriate hardware minimisation enables enhanced network stability and scalability, a 

prospect that must be examined fully. 

5.3 Second Generation Neural Network 

The second generation demonstrator attempted to enhance on the first by reducing 

system size, curtailing non-linearity and improving performance.  Its operation is based 

around hardware minimisation as outlined in chapter 4 which removes the digital to 

analogue output conversion stage.  Functionality is also improved through the addition 

of packet prioritisation.  The optical systems in both generations remain virtually the 

same, however the electronic system in the second generation has been subjected to a 

complete overhaul. 

5.3.1 System Overview 

To aid understanding it is pertinent to first examine the system as a whole.  Subsequent 

sections break the demonstrator down into its component modules while detailing both 

their construction and performance.  This process follows data flow through the 

demonstrator with results presented as appropriate either during the description or in the 

results section at the end. 

An image of the completed system can be seen in Figure 88.  Note that dust and RF 

interference shields have been removed.  Surface mount technology has been used 

throughout to reduce system size. 

At the beginning of a computation, a set of request values are downloaded from a PC to 

four TMS320C5x digital signal processors (DSPs) using serial RS232 ports.  A 

reusable software module called DSK Controller V2.00 was written to provide 

communications under Microsoft WindowsTM 9X/ME.  Information interchange is 
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possible between a single PC and up to four DSPs simultaneously.  The DSPs can be 

remotely reprogrammed and blocks of data of a user defined size can be transparently 

uploaded or download between any memory addresses in both DSP and PC.  All 

commands can be executed at up to 115k baud per DSP. 

Figure 88: Second Generation System Overview 
This is an N=8 or 64 neuron optoelectronic network.  The ferrite cores suppress RF 
interference. 

In this implementation, each DSP handles 16 neurons and thus receives one quarter of 

the requests.  They perform a transfer function based on these requests and use the result 

to switch a neuron's associated VCSEL on or off via the digital VCSEL driver.  An 

interesting point for any future development is that the DSPs perform the same 

instruction on sixteen different data channels.  This mode of operation is analogous to 

that of a SIMD processor.  Such processing would undoubtedly be preferable to the 

current architecture which partially serialises parallel data in an attempt to reduce 

hardware complexity and cost. 

The digital VCSEL driver module controls the current supplied to the VCSEL array.  It 

is attached to the DSP memory bus and configured by writing a value to a specific 

memory location.  The values stored in the driver do not change until specifically 

rewritten by the DSP. 
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Neural network interconnection occurs in the optical domain where the DOE diffracts 

the VCSEL image to form an interconnection pattern on the detector array.  The second 

generation optical system shows greatly improved uniformity in a package two thirds 

the size of the first generation. 

Amplification of any detected optical signal is performed by 64 dual element 

transimpedance amplifiers distributed across four modules.  The transimpedance 

amplifiers take a current generated by the photodiodes and convert it into a voltage thus 

improving its magnitude, bandwidth and linearity all at the same time.  They output a 

voltage range compatible with the ADCs on the DSP module input. 

Combined with the DSPs on the same circuit board are two octal ADCs.  These 

simultaneously return any two of sixteen values converted from the detector by 

accessing a particular memory location.  The values read are used by the DSPs in the 

activation function to determine the next neural network state. 

This iterative process continues until a solution has been found to a given problem.  

Once solved, the DSPs can either signal to the PC that they have finished or continue on 

to solve another problem.  Since the DSPs have internal memory, thousands of 

problems can be downloaded at a time with completion only signalled once 

computation is complete. 

As with all parallel systems, synchronisation is a serious issue.  In this case, no 

electrical interconnects are necessary since the system is already optically 

interconnected.  An optical signal is broadcast which indicates the readiness of each 

DSP to begin computation.  When all DSPs signal ready, network evolution begins. 

5.3.2 Digital Signal Processor Module 

This module is designed to interface with a 40MHz TMS320C5x DSP starter kit [156] 

enabling analogue to digital conversion from 16 different channels through dual 

multiplexing ADCs and 8-bit digital output on two different channels via the normal 

DSP address and data buses.  A logical overview showing data and control flow is given 

in Figure 89.  The module has been designed around existing components on the DSK 

board. 

Analogue signals are sampled from the detector using two Analog Devices AD7829 8-

bit octal flash ADCs [157].  They are connected to a 20 pin input header of which 16 

channels are used for analogue detector input and one for the analogue ground AGND, 
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the function of which is controlled by jumper JP1.  This jumper allows AGND to be 

connected to the DSP module's digital ground DGND and when shorted noise 

suppression in the ADC is improved.  When open, the analogue ground is isolated from 

the digital one. 

Figure 89: Digital Signal Processor Module Logical Overview 
The DSP controls two separate systems, one an analogue input and the other a digital 
output, both of which are integrated on the DSP address and data buses. 

The analogue inputs have a voltage span of 2.5V centred around a specified voltage 

Vmid.  To ensure maximum linearity of readings, Vmid=2.5V was chosen such that all 

readings would be within a standard operational amplifier's region of optimal linearity, 

presuming that the supply voltage Vcc=5V. 

The 16 input channels Vin1 to Vin16 are connected to two eight-channel sample-and-hold 

ADCs.  These are numbered ADC1 and ADC2 with each responsible for Vin1 to Vin8 and 

Vin9 to Vin16 respectively.  Both ADCs convert the sampled input to 8-bit values and 

transfer their information to the DSP data bus on request.  ADC1 controls the 8 least 

significant digits on the data bus and ADC2 the 8 most significant digits. 

Both ADCs should not power down but remain in a high impedance state unless 

information is requested from I/O space.  Sixteen of the DSP's available 64k I/O ports 

are mapped to data memory using memory mapped I/O (MMIO) at address locations 

50h-5Fh using address lines A0 to A4 and A6.  Therefore, any lines that access these 

ports should actively be avoided when interfacing with the ADCs. 

Controlling the ADCs requires the execution of a specific sequence of actions as 

outlined in Figure 90.  To start conversion of any input, chosen previously during the 
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read cycle, CONVST  must be pulled low for at least 20ns.  If CONVST  is not returned 

to a high state soon afterwards then the ADC will go into power down mode.  

Conversion will then begin on the selected input channel.  To apply the CONVST  

pulse, read from I/O address 100h.  The combination of IS  and A8 determine the state 

of CONVST  as shown in Table 11.  Note that this read command will not return any 

useable data. 

Figure 90: ADC Conversion Flow and Data Readout 
A CONVST pulse begins conversion.  After 420ns the conversion is completed and EOC 
is driven low.  The value can then be read from the ADC. 

IS A8 A8 P1 CONVST 

0 0 1 0 1 

0 1 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

Table 11: Conversion Start Interface Logic 
Address line A8 in I/O space is used to control conversion start. 

Figure 91 shows the circuitry required to construct the logic table.  This system uses 

only NOR gates so that just one type of logic gate need be used ensuring optimal use of 

resources on multi-gate components.  The device used was a National MM74HC02 

quad 2-input NOR gate [158].  It operates switches within 8ns and uses a standard 7402 

pin configuration. 
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Figure 91: Conversion Start Logic Circuitry 
Logic implementation of Table 11.  Design converted to only NOR gates. 

When conversion is complete EOC  is pulled low.  This signifies the end of conversion 

and is at most 420ns from when the CONVST  pulse was applied.  The EOC  signals 

are used to generate interrupts to the DSP with ADC1 connected to 3INT  and ADC2 to 

4INT .  This allows software to be notified when conversion is complete. 

Data is read from the ADCs by issuing a read command to I/O space.  This enables CS  

line on both ADCs but must be executed with A9 high (200h).  The interface logic 

required is examined in Table 12 and logic circuitry shown in Figure 92. 

IS A9 A9 P1 CS 

0 0 1 0 1 

0 1 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

Table 12: Chip Select Interface Logic 
Address line A9 in I/O space is used to control chip select. 

Figure 92: Chip Select Logic Circuitry 
Logic implementation of Table 12.  Design converted to only NOR gates. 

The values applied to an ADC's address lines during read specify the next channel to be 

sampled on application of the CONVST  pulse.  For ADC1, A0-A2 are mapped to 

address bus bits A10-A12 and ADC2 lines A0-A2 mapped to address bus bits A13-A15.  

The data returned during a read cycle is a word containing the previous converted value 

from ADC1 in the least significant byte and from ADC2 in the most significant byte.  To 

allow a standard read operation to acquire data, both ADC RD  lines must be directly 

connected to RD  on the DSP.  Table 13 summarises this address bus usage. 
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Table 13: DSP Address Bus Usage 
The table header row contains the DSP address bus lines, the next row the hex value of 
that bit and the final row to where the line is connected on an ADC.  Note that NC means 
no connection and MMIO memory mapped I/O. 

To ensure accurate sample tracking of subsequent readings, conversion of the next value 

must not be initiated until 30ns after the last read operation. 

The completed DSP to ADC interface circuitry can be seen in Figure 93. 

Figure 93: ADC to DSP Interface Circuitry 
This diagram shows the additional circuitry necessary to interface the DSP with two 
ADCs. 

Additional circuitry is also required to handle digital output.  The system to which 

information is written is an extension of the entire 16 bit data bus with writes occurring 

when a latch enable (LE) line is driven high.  Pins Vout1 to Vout16 are TTL digital logic 

outputs direct from the data bus where Vout1 corresponds to D0 and Vout16 to D15.  

DGND is an optional ground connector that can be used to connect the external latch's 

ground plane to that of the DSP by shorting JP2. 

As long as LE remains low, the external module will ignore any information on the data 

bus outputs Voutx.  When LE goes high, the information currently on outputs will be 

stored in the external latch.  LE must remain high for a minimum of 20ns.  This state 
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occurs when both WE  and IS  lines are low.  This results in a NOR logic function as 

shown Table 14.  Thus to activate LE we must write to I/O space with an address of 0h, 

thereby preventing any interference with the ADC interface circuitry. 

IS WE LE 

0 0 1 

0 1 0 

1 0 0 

1 0 0 

Table 14: Latch Write Control 
Implemented using a single NOR gate. 

Minimal circuitry is required and can be seen in Figure 94. 

Figure 94: DSP to Digital Output Interface Circuitry 
The digital output is an extension of the data bus with a dedicated read control line. 

Power consumption of these additional components is critical as the DSK starter kit can 

only supply 50mA at a Vcc of 5V.  The necessary additional components are: 

• 2×ADC at 12mA maximum each. 

• 2×Quad NOR gates at 20µA maximum each. 

• 1×ZRA250 Vmid=2.5V voltage reference source at 150µA maximum. 

This gives a total additional power consumption of 24.19mA which is less than half the 

maximum available and well within tolerable limits. 

A printed circuit board (PCB) was designed using Ranger XL to connect the necessary 

components in the correct manner, the final module shown in Figure 95.  This is a two 

layer PCB where red lines are tracks on the upper layer and blue on the lower. 
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Figure 95: DSP Module PCB Layout 
DSP module PCB layout where red is the upper layer and blue the lower. 

Figure 96: DSP Module Images 
Part (a) shows the module without the DSK attached, component designations from left to 
right being ADC2, ADC1, NOR2 and NOR1.  Part (b) shows the fitted DSK. 

Four DSP modules have been constructed and undergone extensive testing and use.  

They have proven reliable and their flexibility has sparked interest from third parties as 

a tool for other experiments. 

5.3.3 Digital VCSEL Driver Module 

The VCSEL driver module examined here is designed to be directly driven by the DSP.  

It has 64 channels, divided into four blocks of 16 VCSELs, where each channel can take 

either an on or off state.  The current state is altered by writing a new state to the data 

bus and pulling the LE pin high which is associated with the same block of 16 VCSELs.  

The bus state is then transferred to the latches and will be maintained until a new state is 

written. 

A current sinking method is used to drive each VCSEL from a standard octal 

transmission line driver.  The driver part chosen is a Texas Instruments SN74HC573AN 
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octal transparent D-type latch [159] with high current outputs.  The VCSEL array has a 

common cathode configuration so each pin is used to drive the anode as shown in 

Figure 97. 

Figure 97: Digital VCSEL Driver Circuitry 
64 identical driver circuits exist on the module.  The D-type flip-flop holds the current 
state until the LE signal is applied. 

The value of 11R  was calculated to ensure that the correct current was supplied to the 

VCSEL.  To give a maximum drive current, the operating voltage of the latches was set 

to 6V.  It was also known that the maximum load which could be applied to the driver 

was 70mA so each VCSEL could get, at absolute maximum,  75.88
70 = mA.  

Extrapolation of known VCSEL characteristics allowed a standard resistor value to be 

chosen such that is was not possible to overload the driver.  This value was calculated to 

be Ω= 47011R . 

To prevent any stray currents reverse biasing the VCSEL during power up and power 

down of the module, a protective resistor 12R  was fitted in parallel with the VCSEL.  To 

prevent invalidating all previous calculations, this resistor needed to have a resistance 

where ldRR >>12 .  The value of Ω= k10012R  was chosen giving minimal interference 

to the current going through ldR . 

Under normal driver board operation the LE pin on each of the four neural channels 

should be set to 0V.  This holds the latch values regardless of the data present on the 

data bus.  To set the VCSELs to a different configuration, one sets all the pins to the 

desired levels of 0V for off or +5V for on and activate the LE pin by pulling it high to 

+5V for at least 17ns.  The neuron's new values must remain constant whilst LE is high. 
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Figure 98: Digital VCSEL Driver Module PCB Layout 
Digital VCSEL driver module PCB mask where red is the upper layer and blue the lower. 

Figure 99: Digital VCSEL Driver Module Images 
Part (a) shows the complete digital VCSEL driver and part (b) 16 channels that would be 
controlled by a single DSP module. 

Two versions of the digital VCSEL driver were constructed.  Only the second device is 

detailed here, however fabrication of a single chip solution to replace this entire module 

was undertaken during the project.  Due to power constraints, a single chip was only 

capable of driving 16 VCSELs, therefore four devices were required. 
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5.3.4 Optical System 

Again the optical system can be calculated given certain intrinsic values and basic lens 

formulae.  The principle behind the optical system did not change from the first 

generation demonstrator; however it was packaged into a smaller area.  Figure 100 

details the new optical system size and includes images of the optically aligned 

components.  

Figure 100: Second Generation Optical System 
The components in this diagram are scaled relative to each other and overall system size.  
Distance d is measured from the VCSEL array on the left at d=0mm.  The detector array 
on the right is at d=181.5mm which is the overall system size.  Data flows from left to 
right in this figure.  Note that component alignments seem slightly out on the diagram.  
This is due to the perspective of the camera lens. 
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The first generation demonstrator was based around a free-space interconnection held in 

place by optical bench components.  In general, such systems have a negative effect on 

alignment stability and physically occupy a large space.  Therefore the second 

generation used a compact optomechanical baseplate with groove and magnet 

technology.  Furthermore, the addition of x, y and z axis translation mechanisms 

simplified the focusing of diffracted VCSEL outputs onto the photodetector array.  

Figure 101 shows the device schematics and Figure 102 an image of the completed 

baseplate. 

Figure 101: Baseplate Schematics 
Compact optomechanical baseplate construction diagrams.  Scale is valid for all 
diagrams. 
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Figure 102: Baseplate Image 
Groove and magnet assembly used for placement of passive optical elements.  Detector 
position adjustable in x, y and z directions. 

The passive optical components were mounted in metal rings allowing accurate and 

stable placement in the groove.  This baseplate design was highly successful in terms of 

mechanical stability and size. 

Circuit boards had to be constructed to position and interface with both VCSEL and 

detector arrays.  Attention was paid to placement of the optical components as any error 

could potentially prevent alignment at a later stage.  The VCSEL array was mounted on 

a circuit board as shown in Figure 103. 

Figure 103: VCSEL PCB Layout and Mount 
PCB mask uses red to represent the upper layer and blue the lower.  VCSEL array 
mounted in zero insertion force (ZIF) socket to allow replacement. 
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The VCSEL mount is electrically connected to the VCSELs as shown in Figure 104.  

Each VCSEL is numbered as shown in the figure.  The array is split into four channels, 

each handled by an external processor that controls 2 rows or 16 VCSELs and 

numbered from 1 to 4. 

Figure 104: VCSEL Array Connections 
The four DSP modules are associated with blocks of VCSELs arranged in 2×8 sets. 

Each VCSEL has an associated detector as shown in Figure 105.  The optical system 

inverts the VCSEL image both horizontally and vertically. 
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Figure 105: VCSEL to Detector Mapping 
Illustrates association of VCSEL and detector pairs to construct a neuron.  This figure is 
not an accurate optical representation. 

A detector mount is also required and can be seen in Figure 106.  The detector array 

used is identical to that in the first generation system. 

Figure 106: Detector PCB Layout and Mount 
PCB mask uses red to represent the upper layer and blue the lower. 

The optical system was aligned and performed as predicted. 
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5.3.5 DOE Characteristics 

The first generation DOE design did not prove to be of adequate uniformity for the 

required task.  Therefore, the design was re-optimised using an element with double the 

diffraction order spacing of the initial element.  Instead of orders 1, 2, 3 etc. the new 

element used orders 2, 4, 6 etc.  This change to on-order spacing allowed an element of 

double the initial period to be fabricated with a commensurate increase in minimum 

feature size.  The characteristics of these new DOEs are shown in Table 15, both 

proving more than adequate to implement their respective interconnect architectures. 

DOE TDOE (%) ∆r  (%) 

Crossbar Switch 50.0 0.81 

Banyan Switch 50.0 0.83 

Table 15: Second Generation DOE Efficiency and Non-Uniformity 
Non-uniformity across the array has been decreased by using every second order.  This 
also results in a decrease in transmission efficiency.  The elements shown here are well 
suited to an N=8 optoelectronic neural network. 

Figure 107: Second Generation Diffractive Optic Element Profile 
Measured optical power in each spot given a total input power of 714.4µW ±0.2µW.  All 
readings taken with VCSEL stabilised at 16ºC. 
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The DOEs constructed were of binary type and optimised for gλ2 =960nm.  Profiling of 

spot intensity distribution was performed on the element.  The power in each spot on 

both x and y axes can be seen in Figure 107.  The diffracted power profile is well 

defined with an overall experimental diffraction of 47.1% of input power.  0.2% of this 

is present in the zero order and 52.7% is scattered outside the diffraction window, 

effectively being lost. 

5.3.6 VCSEL Array Characteristics 

The VCSEL array examined here was produced by CSEM Zurich [160] and is an oxide 

confined device.  It has an output wavelength of 960nm with a tight maximum variation 

in wavelength variation across the array of ∆λmax=0.25nm.  The array has a mean 

threshold current of 0.45mA ±0.05mA and a mean threshold voltage of 1.4V ±0.05V.  

See Figure 108 for current-voltage and Figure 109 for current-power curves.  From 

these graphs, at an operating current of 5mA the device gives 1.15mW ±0.05mW mean 

optical output power.  Thus the power conversion efficiency can be approximated as 

10.9% ±0.1%. 

Figure 108: CSEM D6 VCSEL Current to Voltage Characteristics 
Minimum, maximum and average values sampled across all 64 array elements. 
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Figure 109: CSEM D6 VCSEL Optical Output Power Characteristics 
Minimum, maximum and average values sampled across all 64 array elements. 

Profiling of the optical power output from each device in the array was performed.  

Given that the divergence of each VCSEL is 21º ±0.5º, there was a power loss from 

each measurement due to the size of the detector input aperture of 8mm.  This aperture 

was set 12mm from the array.  Assuming an even cross-sectional power distribution, 

calculations indicate that only 71.8% ±0.5% of emitted power should be measured. 

A current of 6.5mA ±0.3mA was applied to each VCSEL and the optical power output 

recorded.  Theoretically, this should be in the region of 1.4mW ±0.05mW.  The entire 

array profile can be seen in Figure 110. 

Even after the divergence has been taken into consideration, there is still an 

unaccounted loss of 0.335mW on average.  One possible reason is that oxide 

confinement at the aperture leads to localised heating of the injection region and 

consequent thermal lensing which varies beam direction and divergence with respect to 

local temperature.  Another possible, and simpler, reason could be that the VCSEL 

array had simply degraded since fabrication in 1999.  Regardless, the measured powers 

were within acceptable demonstrator operational tolerances. 
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Figure 110: VCSEL Array Power Profile 
Each point represents the measured output power of a single VCSEL.  All measurements 
have an error of ±0.05mW. 

This system uses a thermoelectric cooler (TEC) [161] to regulate the temperature of the 

VCSEL array and thereby minimise any potential temperature stability issues such as 

those observed in the fist generation demonstrator. 

Profiling was performed on the array to assess temperature stability.  The temperature 

was slowly reduced and optical power output measured.  As expected, optical power 

increased as temperature decreased.  The results can be seen in Figure 111.  The 

temperature was not taken lower than 9ºC as the VCSEL output became unstable at this 

point. 

Two interesting points were noted.  Firstly, jitter of the VCSEL optical output is 

noticeable as temperature decreases.  This is probably due to changes in direction and 

divergence from thermal lensing. 
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Figure 111: Temperature Stability of CSEM D6 VCSEL Array 
The preferred temperature is marked with a cross.  Note that temperature stability is 
excellent with little real variation in optical power output. 

Secondly, there is a noticeable temperature gradient effect.  For example, a VCSEL is 

switched on at an initially low temperature.  Activation of the VCSEL results in excess 

heat being produced locally around the VCSEL.  The longer that the VCSEL is active, 

the more heat that is produced.  This gives an initially higher level of optical output 

power due to a cooler VCSEL that slowly decays to an equilibrium point.  Activating 

more VCSELs reduces the equilibrium point further by adding excess heat and 

consequently decreases the optical output power of each individual VCSEL.  This can 

be compensated for to a certain degree by increasing the thermoelectric cooler drive 

current. 

Care also has to be taken that the VCSEL array temperature does not pass below the 

dew point as condensation of water would obviously prove problematic.  The dew point 

defines the temperature at which condensation will start to form based on environmental 

relative humidity (RH).  This has been measured at 53% ±1% with an ambient room 

temperature of 26ºC ±0.5ºC.  The dew point can be calculated as approximately 15.5ºC.  

The array should preferably not be cooled below this temperature during operation.  

Examination of temperature versus optical output power curves also allows us to 

conclude that a temperature of 16ºC is desirable for all subsequent measurements.  This 

is because a short term rise of 1ºC has a reduced, if nevertheless minimal, impact on 

output power.  Furthermore, 16ºC is not too cool to be unachievable on hot summer 

days and not too hot to be impractical on cold winter days.  The TEC used to cool the 

VCSEL array is a Marlow DuraTEC DT3-4-01LS and can be seen in Figure 112. 
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Figure 112: DuraTEC DT3-4-01LS Thermoelectric Cooler 
Device parameters can be seen in Table 16. 

Parameter Value Parameter Value 

∆Tmax (Vacuum) 68ºC ∆Tmax (Dry N2) 64ºC 

Vmax 3.6V Imax 3.7A 

Qmax 9.0W Stages 1 

Table 16: DuraTEC DT3-4-01LS Device Parameters 
∆Tmax indicates the temperature difference between hot and cold sides of the device at 
maximum load. 

There are two points for temperature measurement at which semiconductor temperature 

sensors are installed.  One is directly behind the VCSEL array on the copper conductor 

and the other is after the thermoelectric cooler on the main heatsink.  The heatsink is 

made by IMI Marston and can dissipate 2.8ºCW-1. 

To ensure that the VCSEL array temperature does not go lower than the dew point, the 

minimum temperature must be sustained at 16ºC with no elements on.  Given an 

atmospheric temperature of 27ºC ±0.5ºC, the thermoelectric cooler drive current was 

gradually increased until the temperature stabilised at 16ºC ±0.5ºC.  This was found to 
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be ITEC=0.5A. The TEC's performance [162] can therefore be examined by plotting the 

line (a) on Figure 113 given that 139.0max =II . 

Figure 113: DuraTEC DT3-4-01LS Performance Graph 
Graph used to estimate performance of TEC. 

By drawing lines (b) and (c) on Figure 113 we can extrapolate high and low TEC 

voltages respectively.  The lower voltage cools smaller differences in temperature and 

the higher handles larger.  Therefore our voltage must lie within the regions of 

V7.0=TEChighV  at the high end and V414.0=TEClowV  at the low end. 

Measurement indicated that the system was operating almost exactly at VTEChigh=0.7V.  

Therefore, we can calculate the TEC power consumption as being W35.0=TECQ .  This 

resulted in a measured temperature increase at the heatsink of 5ºC to 32ºC ±0.5ºC.  

Given this rise, we can determine the temperature difference, and thereby power, using 

the graph as being 25.0max =∆∆ TT .  This value is drawn on Figure 113 as line (d) and 

allows us to calculate the convective heat energy dissipated as being W54.0=convQ . 

This value can be verified theoretically by working out the convected heat absorbed 

from the atmosphere into each of the three cooling element components.  The 

summation of these gives W554.0=TconvQ  and is close to the measured power 

dissipated Qconv.  Indeed, the theory is very close to measurement with an error margin 
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of less than 2.5%.  This is probably due to other thermal factors which were considered 

negligible in this case. 

The next stage was to examine the array temperature when all VCSEL elements are 

active.  This resulted in a rise at the array of 7ºC ±0.5ºC to 23ºC ±0.5ºC.  Therefore, we 

can calculate 14.0max =∆∆ TT .  By plotting line (e) in Figure 113 it can be seen that 

the thermoelectric cooler is approaching optimum efficiency at full VCSEL array 

power.  This gives a heat load of W125.1=activeQ .  Linear extrapolation allows 

estimation of the convected heat load with a difference of 4ºC ±0.5ºC as being 

W196.0=aconvQ  where the additional heat from the VCSEL array is W929.0=vcselQ . 

The accuracy of this can again be calculated theoretically.  Each VCSEL in the array 

has been measured to consume mW95.14=P  of energy.  Since the theoretical 

efficiency of these VCSELs is 10.9%, 89.1% of this power would be lost as excess heat.  

For 64 VCSELs this would be a generated heat of W853.0=TvcselQ .  The slightly 

higher measured temperature Qvcsel is due to the three thermal interfaces through which 

the active heat load must travel before being thermoelectrically pumped into the 

heatsink.  Initially, these interfaces used a standard thermal compound, Dow Corning 

340, which had a thermal transfer coefficient of 0.48Wm-1ºC-1.  It was suspected that 

they were bottlenecking heat transfer, so a silver thermal compound was applied, Arctic 

Silver II, which had thermal conductivity of 8.6Wm-1ºC-1.  This significantly improved 

the rate at which heat was transferred and reduced the temperature difference at full load 

between VCSEL and TEC cold side by 6ºC. 

The calculations and measurements made in this chapter allow array temperature 

prediction.  As long as ITEC=0.5A and VTEChigh=0.7V, the VCSEL array will have the 

following temperature: 

 ( ) ( )11.011Cº ×+−= vairvcsel nTT  Equation 72 

where nv is the number of VCSELs continually active ranging from 0 to 64.  Note that 

nv will need to be modified depending on VCSEL load.  For example, if there are nv=32 

VCSELs active but only for 50% of the time then one should half the value of nv.  These 

calculations are specific to the thermoelectric cooler and associated heat sinking used 

here. 

The VCSEL system was run at full duty cycle twice, for about five minutes at a time, to 

assess stability at high temperatures.  Appropriate cooling was applied using the 

thermoelectric module.  Unfortunately, the array had not been mounted on a sapphire 
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plane which allows localised heat to be effectively removed.  This resulted in the 

degradation of power output from one of the VCSELs.  It is not known if this is the sole 

cause, as the VCSELs have a mean time between failure (MTBF) of ~7 hours.  System 

alignment and testing must have used a fair percentage of their lifetime by this point.  

5.3.7 Transimpedance Amplifier Module 

Transimpedance amplifiers, or current to voltage converters, take a current produced by 

a photodiode and convert it into a voltage.  In so doing, they improve both the linearity 

and bandwidth of photodiode response.  This section examines the transimpedance 

amplifier module used in this system and its associated characteristics. 

This section is written in reverse, defining output and then matching input 

characteristics.  Since the analogue to digital converter which takes information from 

the amplifiers has a specific input voltage range requirement, 1.25V for 0% to 3.75 for 

100%, signal amplification and conditioning is necessary to ensure easily discernable 

readings.  Figure 114 shows the designed circuitry. 

Figure 114: Transimpedance Amplifier Circuit Diagram 
In total 64 amplifier channels exist divided up across four modules.  Table 17 shows 
component values. 
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There are 64 channels in total, each channel requiring its own dedicated circuitry, with 

all the channels divided up across 4 identical modules.  Each module has a voltage 

reference source as shown in the upper branch and 16 amplifier channels as shown in 

the lower branch. 

Component Value Component Value 

Resistor R13 33kΩ Resistor R14 33kΩ 

Resistor R15 12kΩ Resistor R16 33kΩ 

Resistor R17 33kΩ Resistor R18 33kΩ 

Resistor R19 33kΩ Resistor R20 33kΩ 

Resistor R21 22kΩ Variable Resistor R3 50kΩ 

Table 17: Second Generation System Component Values 
Component types and values for Figure 114. 

First let us examine the voltage reference circuitry in Figure 114.  This circuitry exists 

because the analogue to digital converter in the next stage requires a signal that is 1.25V 

at its lowest point.  However, this point should be adjustable to compensate for 

component tolerances.  With reference to the points marked on Figure 114, a precision 

voltage reference source ZRA250 was used in conjunction with R18 to give a steady 

2.5V at Va.  Since 1.25V was desired, this value then needed to be halved and inverted.  

This was done using a precision voltage offset amplifier which has high voltage output 

stability over time.  The device was configured in inverting mode and a variable resistor 

VR3 used to adjust the voltage reference output.  Given that Va is a 2.5V input, the 

voltage output at Va can be described as: 

 
2019

35.2
RR

VR
Vb +

−
=  Equation 73 

Under normal circumstances, VR3 should be set to 33k Ω  for 25.1− V output.  

Adjusting VR3 toward 0k Ω  will cause it to approach 0V.  Increasing VR3 towards 

50k Ω  will theoretically give an output of 89.1− V.  This value has been measured at 

1.8V which remains within the 5% resistor tolerance. 

Input bias current [13] can prevent a zero input voltage from giving a zero output 

voltage.  To minimise this effect, the value of R21 has to be chosen carefully.  In this 

case: 
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Thus, if VR3 is set to 33k Ω : 

 Ω×= 3
21 1022R  Equation 75 

Therefore R21 was set to 22k Ω . 

There are 16 identical amplifier channels on every module, each with two amplifiers in 

series using a Texas Instruments TL074CD [163].  The first amplifier takes an input 

current from a photodetector cI  in Figure 114 and converts it into an output voltage.  

All amplification of incident light must be done in this stage to minimise signal to noise 

ratio.  It is configured in transimpedance mode, otherwise known as a current-to-voltage 

converter, the voltage at point Vd being described by the equation: 

 13RIV cd −=  Equation 76 

where R13 is 33k Ω .  The system should theoretically generate a 34mV deflection for 

every 1µA of current generated by the detector.  Therefore, there should be a 116mV 

deflection for a single incident VCSEL channel.  Deviations are to be expected between 

channels due to imperfection in component manufacture. 

The input voltages from points Vb and Vd are then put through a second amplifier stage 

configured in summing mode.  This gives the following voltage at point Ve: 

 







+−=

16

17

14

17

R
RV

R
RV

V db
e  Equation 77 

Again, the effect of input bias current must be minimised by careful selection of R3: 
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=  Equation 78 

 Ω×= 3
15 1011R  Equation 79 

As there was no 11k Ω  component available, a 12k Ω  resistor was used instead. 

Figure 115 shows four completed modules and the associated masks.  The use of 

surface mount components means that all circuitry required for two amplifier channels 

fits neatly into 15mm×15mm using only a single side of the circuit board.  Decoupling 

capacitors were used on each amplifier of 100nF and large value electrolytic capacitors 

of 10µF and 100µF were used for power supply smoothing at point of entry to each 

module. 
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Figure 115: Transimpedance Amplifier Module PCB Layout and Image 
PCB mask uses red to represent the upper layer and blue the lower. 

The photodiode transimpedance amplifier built was analysed both theoretically and 

experimentally.  However, the theory indicated that the amplifier would resonate.  A 

phase compensation capacitor was added and the system re-examined.  The addition of 

this capacitor reduces resonance but will also decrease bandwidth.  Resonance has also 

been observed experimentally and almost certainly stems from the detector circuitry 

since laser relaxation oscillations, the only other possible source, have died away 5ns 

after any state change [160]. 

The circuit constructed in Figure 114 was examined experimentally to evaluate the 

magnitude of resonance.  Calculations predict that the resonance frequency will be 

approximately 499kHz.  Measurement indicates that it is slightly less at 465kHz 

±22kHz.  Figure 116 examines the response closely and also shows traces with the 

addition of a phase compensation capacitor.  It is clear here that a 10pF capacitor is 

nearly, but not quite, enough to remove amplifier resonance whereas 22pF does the job 

well.  However, initial rise times are badly affected as capacitance increases.  Returning 

to the previous theoretical bandwidth analysis, 0pF has a 3− dB point of 699kHz, 10pF 

of 471kHz and 22pF of 217kHz.  Examining the oscilloscope images highlights the 

difference in rise times with varying feedback capacitance. 
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Figure 116: Transimpedance Amplifier Response and Resonance 
Results taken at ~14kHz. 

Although not obvious at 14kHz, the slower rise time of the phase compensated circuit 

becomes visible at 55kHz as shown in Figure 117.  However, this circuit was 

constructed without a capacitor for one good reason - information flow is controlled by 

a digital signal processor.  Addition of a capacitor prevents the voltage from reaching 

full scale until nearly 8µs after the start pulse has been sent.  Without phase 

compensation, this value is reached much more quickly, but not stably, in a constant 

time of 1.6µs.  Given that the system knows when the start pulse was sent, careful 

timing allows precise sampling of the peak value.  As the DSP has a clock frequency of 

40MHz, NOP operations can be executed to exactly time sampling given that each one 

has a delay of 25ns.  Timing begins immediately after the start pulse has been issued.  

To ensure best results, the ADC hold time of 120ns must be timed to straddle the first 

peak exactly so sampling must begin 60ns beforehand. 
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Figure 117: Transimpedance Amplifier Response and Resonance 
Results taken at ~55kHz. 

To ensure correct timing a total of 58 NOP commands are required.  This is a large 

amount of time, as far as the DSP is concerned, and can be used to perform other 

calculations if care is taken to ensure accurate sequencing.  Subsequent results could be 

taken by waiting for the next peak.  This trick squeezes bandwidth out of the system 

where it is not normally available. 

Sometimes this timing method may not be practical, but there is another option.  By 

taking two samples half the resonance frequency apart (approximately 1.15µs) we can 

average the values to get a response similar to that of the phase compensated circuit.  

However, this does have its limitations as approximately 6µs after the start pulse the 

phase compensated circuitry will begin to give more accurate readings.  In the worst 

case scenario, the results will be 20% below that of a phase compensated system.  This 

figure improves with time. 

The experimental bandwidth of the transimpedance amplifier system was measured with 

and without phase compensation.  Figure 118 shows the results taken.  To aid 

comparison the 3− dB voltage can be calculated using: 
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V

V dB =−  Equation 80 

where 0V  is the peak-to-peak voltage at low frequency. 

Figure 118: Transimpedance Amplifier Measured Bandwidth 
Note that dual pole behaviour is visible, especially in the uncompensated circuit, as 
characterised by the additional peak. 

First, let us examine the case with no feedback capacitor.  Theoretically, there will be an 

amplification peak at 499kHz followed by a 3− dB bandwidth of 699kHz.  

Measurement indicates that the amplification peak is somewhere between 400 and 

500kHz, which concurs with theory and points to the measured resonance frequency of 

465kHz.  The bandwidth was measured to be 710kHz which, again, is very close to the 

theoretical 699kHz. 

Next we have a system with a feedback capacitor where measurement indicates that 

phase compensation not only reduces bandwidth but also removes peaking, as 

theoretically predicted.  If the value of the feedback capacitor is increased, the 

bandwidth is correspondingly decreased.  10pF reduces the 3− dB bandwidth to 

110kHz and 22pF to 78kHz.  This is significantly lower than expected, indicating that 

there is another pole in the system which remains unaccounted for. 

Although the voltage mode amplification stage remains well within its gain bandwidth 

product, there is an obvious secondary peak in the frequency response curve with no 

feedback capacitance.  Phase compensation also results in frequencies lower than those 

theoretically predicted, indicating that this pole is removing available gain from the 

transimpedance amplifier.  This can again be seen in Figure 116 and Figure 117.  Even 

as amplifier resonance dies away the output voltage continues to rise, by up to 15mV if 
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given sufficient time.  This behaviour is suggestive of a large value capacitor with a 

small influence on the system.  The symptoms fit with an effect known as power supply 

noise coupling [84].  The theory indicates that fitting a larger amplifier decoupling 

capacitor of 10µF, rather than the 100nF capacitor currently present, can significantly 

reduce this problem. 

There are a few recommendations for any future implementation of such a photodiode 

transimpedance amplifier.  First, ensure that the unity gain bandwidth product of the 

amplifier is as high as possible.  Use a component such as OPA689 where cf >200MHz 

to maximise available bandwidth.  Note that current feedback amplifiers do not function 

well in this system design.  Choose fR  to maximise first stage bandwidth and use the 

second stage to provide further amplification.  This is a trade-off so it will need to be 

balanced.  Next, add a feedback capacitor to stabilise the current-to-voltage stage and 

prevent ringing.  Finally, remove any potential power supply noise coupling problems 

by adding a high value op-amp decoupling capacitor. 

5.3.8 Results 

This section shows test results from the second generation neural network and 

extrapolates potential performance. 

Firstly, a series of test patterns used to test the VCSEL array are shown in Figure 119.  

Note that all VCSELs are working correctly at this point in testing. 

Software was written to aid alignment of the system which reads the analogue inputs 

and displays the amount of incident light as an OpenGL image on the PC as shown in 

Figure 120.  Each triangle has a magnitude appropriate to the amount of incident light.  

These readings have been five times oversampled to ensure accuracy and to average out 

noise.  What is obvious here is that there is a different response for each detector 

channel.  This is due to component tolerances altering the final output values.  All four 

detector amplifier modules were adjusted so that the minimum signal present across the 

entire array was just above zero.  However, a large amount of noise was still observed 

on all input channels, ~70mVpk-pk.  This was discovered to be interference from the 

DSP, so shielding was applied to the DSPs and ferrite cores to interconnects to attenuate 

RF noise.  This reduced interference significantly.  Five sample data sets were then 

taken to calibrate zero level noise variation with no incident light.  Note that the ADC 

has a resolution of 9.8mV for 1 LSB difference.  This zero level was then used to 
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calibrate subsequent readings, giving a more accurate overall output, a good example of 

the DSP being used to remove inherent system non-linearity. 

Figure 119: VCSEL Test Pattern Images 
Images taken using an NIR CCD camera with high magnification lens. 

Figure 120: System Optical Input 
The height of a triangle represents the magnitude of optical signal incident on a detector.  
This measurement was taken with the four corner VCSELs active.  Snapshot from PC 
software using OpenGL for visualisation. 
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Measurements were then taken with VCSEL 1, VCSEL 8, VCSEL 57 and VCSEL 64 

simultaneously active.  Each clearly shows the cross pattern generated by the installed 

crossbar DOE.  This data was then analysed and adjusted using the previously measured 

zero level.  It showed that an inhibitory signal produced a voltage deflection of 117mV 

on average, previously theoretically predicted as 116mV.  Unfortunately, optical system 

design results in a zero order, or neuron self inhibition, of 50mV on average.  However, 

this can again be compensated for by using the same technique as the zero order since 

the DSP has plenty of free cycles.  DSP noise is unfortunately still present, however it 

has been reduced to 22± mV in the extreme case.  Another important measure is inter-

channel cross-talk.  This is only present in physically adjacent optical channels and has 

been measured as 11mV on average, i.e. 9.4% of full scale channel optical power. 

The synchronisation of DSPs was assessed and it was concluded that regular 

resynchronisation is unnecessary.  After 1 second the difference between two DSP 

modules is typically 9.0µs ±2.7µs.  This should not be significant where evolution times 

of 400 iterations are involved as the difference after this period of time is a fraction of a 

clock cycle in the worst case. 

The VCSEL array has been driven at 2MHz experimentally.  Unfortunately this is 

superior to that of the detector array, which is directly limited by the transimpedance 

amplifier due to a high level of amplification.  Careful DSP programming yields an 

input bandwidth of 250kHz as 2MSPS ADC are multiplexing eight channels.  Therefore 

we can calculate the CPS rating of the second generation neural network demonstrator 

as 224×106 CPS in crossbar switch configuration, 304×106 CPS in a Banyan switch 

configuration and 1×109 CPS in a fully interconnected configuration. 

5.3.9 Conclusion 

The design and construction of both systems have been an evolutionary process.  

Theory and experiment have given an increasing understanding of the circuitry coupled 

with improvements which enhance both bandwidth and response in present and future 

iterations. 

The second generation demonstrator enhanced optical system characteristics 

considerably.  Non-uniformity is now so low that systems of N=30 can be constructed 

using current techniques.  Indeed, the entire active free space optical system will fit into 

a tube 25mm in diameter and 187mm long and it is still possible to reduce this volume. 
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5.4 Further Work 

This section suggests short, medium and long term enhancements for the neural network 

demonstrators. 

First of all, there are three areas that could be quickly and easily improved in the short 

term.  All of these solutions are simple component substitutions that improve 

performance, with replacement components probably even pin compatible.  First is the 

transimpedance amplifier which requires a higher speed op-amp in place of the existing 

low speed component.  Second are the ADCs which suffer from serialisation of data.  

Replacement of only this component could instantly treble neural network performance.  

The third is the DSP array as additional processing power is always welcome. 

In the medium term, serialisation should be completely removed from the electronic 

system with the replacement of the current four DSPs with either a SIMD processor or 

an array of fine grained processing elements with one dedicated to each channel.  

Another possible addition may be a current offset for each VCSEL to allow pre-biasing 

above threshold, decreasing turn-on times and compensating for erroneous VCSEL 

values.  A programmable current source could be used in combination with the DSPs 

such that the system is calibrated and correctly biased at startup.  This was not 

implemented as not only did it introduce unnecessary complexity to what is essentially a 

demonstrator but VCSEL rise times and closely matched resistances were such that it 

was not deemed necessary. 

More long term goals involve integration of the entire neural network onto a single chip 

containing optical input, processing and optical output stages.  Electronic 

interconnection from optical destination to optical source is surmountable in either one 

of two ways as shown in Figure 121. 

The folded system uses a single optoelectronic neural network chip and returns data to 

the displaced location on the chip after performing interconnection.  Optical system 

length is halved but volume remains constant.  The pipelined system is another 

construction option which uses two neural network chips that simultaneously perform 

two independent calculations.  The viability of such optical hardware has already been 

demonstrated in a robust manner where a shock hardened and sealed module withstood 

±50GHz-1 at 125Hz for several seconds [164]. 
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Figure 121: Long Term Neural Network Integration 
The integrated optoelectronic neural network contains all necessary components for an 
operational neural network.  Information flow is indicated by the dashed lines.  Diagrams 
not to scale. 

An important measure that has not been made is quality of service, mainly due to a lack 

of accurate network traffic models.  Such analysis will conclusively define the future of 

the optoelectronic neural network scheduler. 

5.5 Conclusion 

The construction of two fully operational demonstrators has illustrated the potential of 

optical interconnection to enable architectures precluded by electronics alone.  The 

architecture behind these systems is itself unique yet without optoelectronics its 

construction is simply not feasible.  Scalability of these system has also proven to be 

unprecedented.  If the system was scaled to the next size up where N=16 and run at 

100MHz, rather conservative for optical components, the fully interconnected neural 

network reaches a ground-breaking performance of 6.5 Terra connections per second. 
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6 Optically Interconnected FPGAs 

This chapter will examine the evolution of reconfigurable hardware to its current 

embodiment, specifically the field programmable gate array (FPGA).  The FPGA is 

normally reconfigured by an external controller to implement a desired circuit.  

Reconfiguration can be performed with speeds at or near real time, depending on both 

the extent of reconfiguration and the time taken to download configuration data.  As 

with all VLSI systems, the increasing density and speed of silicon circuits frequently 

transfers the performance bottleneck in any system to its communications, with FPGAs 

no exception.  To make dynamically reconfigurable computing at all viable, new FPGA 

configurations must be downloaded at a rate which puts the component out of action for 

the shortest possible time period.  Optoelectronic interconnects are widely considered as 

a potential solution to the interconnection problem and are already being deployed at a 

crude level in many commercial systems, but conspicuously not for the FPGA.  Aside 

from the potential of optics for raw data throughput simply unattainable in conventional 

systems, what is perhaps more exciting is the enabling of new architectural concepts by 

a combination of this throughput with the potential to reconfigure at high speed. 

The addition of optical I/O opens up relevant areas in high bandwidth reconfigurable 

computing previously excluded by the low bandwidth I/O of high density FPGAs.  This 

chapter will consider FPGA architectures along with their application in the field of 

reconfigurable computing.  Two case studies are examined along with their 

implementation using dynamically reconfigurable optically interconnected FPGAs. 

6.1 Reconfigurable Hardware 

Reconfigurable hardware can be categorised into one of four classifications, presuming 

that a device has some inherent level of configurability.  This chapter adopts the 

terminology defined in [165]. 

• Configurable hardware can be configured one or two times.  An example of such 

hardware is a standard circuit board produced by a manufacturer for a specific 

product line.  Although the board supports all product versions from the low to high 

ends, its exact function is configured by adding the appropriate components and 

modifying sets of switches or jumpers. 
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• Reconfigurable hardware has the advantage that it can be reconfigured many times 

to suit the task on hand.  Such systems usually contain components such as 

programmable logic devices (PLDs), which act as truth tables, Boolean equations or 

state machines, or programmable read-only memories (PROMs) which can be used 

as non-volatile memories for microprocessors or microcontrollers.  Some forms of 

reconfigurable hardware are in-system programmable (ISP) and can be re-

programmed while still resident on the circuit board. 

• Dynamically reconfigurable hardware emerged with the advent of static random 

access memory (SRAM) based FPGAs and opened up another chapter in 

reconfigurable hardware.  The SRAM cells allowed an FPGA's logic to be 

configured by simply loading a bit pattern into the SRAM.  Thus a system could be 

quickly reprogrammed to perform any appropriate task.  For example, on start-up the 

FPGA could be configured to perform diagnostics on itself and its circuit board 

before dynamically reconfiguring to perform the main task(s) for which it was 

designed. 

• Partially reconfigurable hardware addresses the problem with the majority of 

dynamically reconfigurable hardware in that in order to reconfigure the device, its 

operation needs to be halted and the entire SRAM contents reloaded resulting in the 

irretrievable loss of any data in FPGA registers.  This led to the development of a 

new type of FPGA which supported dynamic reconfiguration of selected portions of 

internal logic with no disruption to the device's I/O or system level clocking and 

enabled continued operation of portions of the device not undergoing 

reconfiguration.  One feature of particular benefit is that the contents of internal 

registers are not lost during reconfiguration.  This allows one instantiation of a 

function to hand over data to a new instantiation of another function. 

6.2 Device Evolution 

There are many methods at a designer’s disposal for integrating discrete components 

onto a single VLSI ASIC [166], each method having a specific capacity, performance, 

flexibility and unit cost in both time and money.  This section outlines the functions of 

various technologies with the aim of highlighting new opportunities presented to 

designers through the use of FPGAs. 
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A full custom system is where the entire VLSI circuit is carefully tailored to the 

designer’s requirements.  This results in a high performance chip with optimal silicon 

usage and is sometimes the only method of implementation considered for certain 

applications such as state-of-the-art microprocessors.  Fabrication costs and initial set-

up times for full custom solutions are also high since the flexibility afforded to the 

designer results in chip design being complex and time consuming. 

A standard cell design sacrifices the flexibility and performance of a full custom design 

to speed up the design process.  This is done by using a specific set of design 

restrictions and standard format cells enabling the use of software tools to automate the 

design process.  A standard cell method predefines all gates as a series of cells with the 

same height and placement of power and ground lines as shown in Figure 122. 

Figure 122: Standard Cell Layout 
Sample routing of a series of standard cells.  Numbered cells have a programmed 
functionality whereas routing cells, such as the one between Cell 6 and Cell 7, serve to 
transfer information between rows. 

The chip is laid out in interleaved logic and routing rows, the latter being as large as is 

necessary to accommodate all routing.  Routing between routing rows is accomplished 

using higher metal layers or by route through cells.  Essentially, the designer need only 

specify functionality and software will create the layout.  Fabrication of a standard cell 

is done by a silicon foundry, resulting in approximately the same fabrication times as 

full custom designs. 
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The problem with both full custom and standard cell designs is that they have to be 

fabricated from scratch.  In an mask programmable gate array (MPGA) most of the 

fabrication is carried out beforehand.  For example, an MPGA may consist of sets of 

transistors in specific locations which are partially interconnected to form the basis for 

mapping certain types of logic gate.  Thus all any designer need do is interconnect the 

required elements to give the desired functionality.  This method reduces both cost and 

time of fabrication as a foundry can store large amounts of standard design, partially 

fabricated chips.  The designer still has a great deal of flexibility and is only limited by 

the amount of routing available on the chip.  Unfortunately it is inevitable that there will 

be inefficiencies as some designs require more or less of a specific resource or routing 

bandwidth than are available on chip. 

One of the first general purpose pre-fabricated chips to achieve widespread use was the 

programmable read only memory (PROM).  It consists of an array of one time write and 

thereafter read only cells pre-programmed with a truth table function.  Information on a 

PROM is normally stored using one of three methods: 

• Fuses/antifuses can be used to store bits, the condition of which determining the bit 

value read.  They are blown by applying a high voltage. 

• Erasable PROMs (EPROMs) are programmed by application of a high voltage but 

differ in the fact that it can be erased by exposure to ultraviolet (UV) light.  This 

allows the EPROM to be reprogrammed. 

• Electrically erasable PROMs (EEPROMs) are again programmed using a high 

voltage but this time the chip can be erased by purely electrical means. 

One other technology well worth a mention here, but not strictly classified as a PROM, 

is random access memory (RAM).  Its characteristics are essentially identical to a 

PROM except that it is can be both read and written and therefore reprogrammed in 

system on the fly. 

Programmable logic devices (PLDs) were specifically designed to implement logic 

circuits and typically consist of an array of AND gates followed by an array of OR gates 

in a sum-of-products. 

• Programmable array logic (PAL) is the most common type of PLD with a 

programmable AND plane followed by a fixed OR plane. 
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• Programmable logic arrays (PLA) are a more flexible version of the PAL which 

allows both AND and OR planes to be programmed. 

• Generic array logic (GAL) is a further enhancement of the PLD which can be 

configured to implement several different types of PAL with optional output 

inversion. 

• Complex programmable logic devices (CPLDs) break up complex systems by 

effectively connecting several PLD elements together using a switching matrix. 

PLDs can again be implemented using fuse/antifuse, EPROM or EEPROM 

programming techniques. 

Field programmable gate arrays (FPGAs) are fully prefabricated devices designed to 

implement multi-layer circuits instead of simple PLD sum-of-product terms with the 

only limit on chip circuit complexity being available resources.  Unfortunately, this 

results in a less predictable propagation delay.  It should be noted that FPGAs are 

sometimes referred to as CPLD devices, however to avoid ambiguity they will always 

be referred to here as FPGAs.  FPGAs are not only available in fuse/antifuse, EPROM 

and EEPROM technologies, but also in SRAM and dynamic RAM (DRAM) versions 

[167].  SRAM and DRAM versions allow fast in-circuit reconfiguration of the chip but 

are disadvantaged by the amount of silicon required by RAM technology.  

Reconfiguration can either be partial or complete, which is device dependent, and need 

not even result in the disruption of logic blocks which are not being reconfigured. 

6.3 The FPGA 

The FPGA [168]-[169] was first introduced in 1985 by Xilinx and since then several 

other companies have released similar products.  This section examines standard FPGA 

architectures and characteristics. 

6.3.1 FPGA Classes 

There are four main classifications of FPGA layout as shown in Figure 123.  All of 

these four architectures are commercially available, each describing the positioning of 

both routing and logic blocks.  Although interesting on a chip layout level, when 

designing a logic circuit sophisticated CAD tools are used which translate the design 

therefore rendering the underlying architecture transparent.  Architecture choice is 

dependent on application, some being more suited to a particular task than others. 
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Figure 123: Main FPGA Classes 
This diagram shows the four main commercially available FPGA classes.  Input/output 
blocks (IOBs) provide the interface between package pins and internal signal lines. 

6.3.2 The Configurable Logic Block (CLB) 

Configurable logic blocks (CLBs) provide the functional elements for construction of a 

user's logic design in an FPGA.  The CLB's most important figure of merit is its 

functionality.  Increased functionality allows more complex logic functions to be 

implemented in a single CLB, however as the functionality of a single CLB increases so 

does its size, resulting in fewer CLBs on each FPGA.  A single CLB contains a number 

of standard building blocks, arranged in a manufacturer specific manner, to allow 

implementation of various logic functions.  The building blocks are: 

• Look-up tables (LUTs) take M Boolean inputs and give N outputs, where N is usually 

1.  The outputs given are chosen to represent an appropriate function.  This thesis 

will adopt M-LUT-N to identify a LUT's properties: e.g. a 3-LUT-1 is a three input 



Optically Interconnected FPGAs 

166 

LUT with one output.  Such a look-up table could be used to implement a 3 input 

AND gate as demonstrated in Table 18.  The number of output bits which need to be 

stored for any lookup table is a direct function of the inputs: 2M.  Thus a 4-LUT-1 

requires 16 stored bits in contrast to the 3-LUT-1 which requires 8.  The problem 

with lookup tables is that larger units tend to remain under-utilised.  It has been 

shown that, for most applications, the optimum LUT size is a 4-LUT-1 [168]. 

• Programmable logic arrays (PLA) were introduced for the very reason that LUTs 

are inefficient with dimensions of M>5.  The area efficiency of PLAs was examined 

with M inputs, N outputs and K product terms and the optimal device shown to have 

values of approximately K=10, M=3 and N=12 [170].  This gives a 4% space to 

functionality advantage over a 4-LUT-1 implementation. 

• D-type flip-flops are extremely useful, although not necessary, when any kind of 

sequential logic operation needs to be performed.  It has been shown experimentally 

[171] that without a flip-flop in a CLB the number of CLBs required to implement a 

function approximately doubles. 

Input M Output N 

A B C x 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Table 18: 3-LUT-1 
Sample output for a 3 input 1 output look-up table configured to act as a three input and 
gate. 
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CLBs can contain other components such as logic gates, buffers and multiplexers, 

however there is no standard implementation.  Figure 124 illustrates a sample 4-LUT-1 

based CLB. 

Figure 124: Configurable Logic Block (CLB) 
A sample CLB design taken from [171]. 

The problem that any manufacturer has when designing an FPGA is trading off CLB 

granularity against functionality.  One possible way round this problem is to create a 

non-homogeneous array of logic blocks, however such an array will almost always have 

elements that are not suited to a given application.  Regardless of CLB configuration, 

the final efficiency of an FPGA is highly reliant on its CAD tools.  If the CAD tools do 

not map a logic circuit optimally onto the CLBs then any architectural advantage will be 

squandered. 

6.3.3 FPGA Routing 

FPGA routing deals essentially with the connection of CLBs together with other CLBs 

and input/output blocks (IOBs) thus providing the necessary functionality.  The balance 

between area given to routing and to CLBs is critical: too much to CLBs and it will not 

be possible to wire complex systems together, too little and routing will remain unused.  

On a standard FPGA, routing will normally occupy 70%-90% of all the available area.  

Routing is expensive in terms of area and delay since the programmable switches take 

up a significant area and have appreciable resistance and capacitance. 

There are two types of block used in routing on an FPGA which are defined as 

connection blocks (CBs) and switch blocks (SBs).  Figure 125 shows how a symmetrical 

CLB array architecture is constructed using these two additional and essential blocks.  

The internal connections possible in both CBs and SBs are again manufacturer 

dependent.  A manufacturer must consider the amount of routing its architecture 
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requires and optimise CB and SB connectivity to allow maximum interconnection 

flexibility whilst keeping redundancy to a minimum. 

Figure 125: Symmetrical Array Routing 
Connection blocks (CBs) and switch blocks (SBs) can be used to route I/O from CLB 
elements into routing channels. 

A sample connection block is shown in Figure 126.  It indicates a configurable routing 

switch point using a cross, the CB itself having a predefined interconnection topology. 

Figure 126: Connection Block 
A sample connection block where the crosses represent possible connections. 

Flexibility is an important issue here as too few routing switches or programmable 

connections could result in it being impossible to interconnect two CLB pins. 

Figure 127 shows a sample switch block. 
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Figure 127: Switch Block 
Sample switch block with all possible switch configurations from one channel shown. 

The flexibility F of a switch block is defined as the number of wire segments any 

incoming wire segment can be connected to, in the example shown this is F=6.  When 

designing a switch block topology the manufacturer must again choose a topology that 

does not prohibit two CLB pins from being connected together. 

Routing resources in an FPGA are normally classified into one of three categories thus 

defining their primary use.  These classifications are: 

• General purpose interconnect which is used for connections that span one or more 

local CLBs.  It is implemented using routing channels, connection blocks and 

switching blocks as described above.  Unfortunately, each switch or connection 

block through which a signal must pass has an associated RC delay resulting in 

signal propagation issues at higher device frequencies. 

• Direct interconnect provides a direct connection with one or all of a CLB’s 

neighbours to either the right, left, top or bottom. 

• Long lines are used to route connections that need to span several CLBs with low 

skew providing a partial solution for signals that would otherwise traverse several 

routing switches incurring cumulative RC delays. 

One final but important consideration in FPGA routing is IOBs, without which an 

FPGA would be useless.  IOBs must be chosen such that they support multiple output 

modes such as transistor-transistor logic (TTL) or complementary metal-oxide 

semiconductor (CMOS) and provide enough, but not excessive, drive current to allow 

any attached device to function correctly.  Unfortunately I/O is the weak link in FPGA 

design and has scaled disproportionately to chip density. 
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6.3.4 Commercially Available FPGAs 

Device Architecture SRAM 

(bits) 

IOBs Ref. 

Xilinx XC6264 Sea-of-Gates, FPGA. 16,384 512 [172]

QuickLogic QL4090 PLD. 25,344 316 [173]

Dynachip 6055 Symmetrical Array, FPGA. 51,200 320 [174]

Lucent Orca OR3T165 Sea-of-Gates, FPGA. 134,144 512 [175]

Altera Apex EP20K1000E Symmetrical Array, PLD. 540,672 780 [176]

Table 19: Commercial FPGAs 
Examples of FPGA technology as of June 1999. 

To illustrate commercially available technologies, Table 19 contains some sample 

FPGAs as of June 1999.  Note that the trend of increasing SRAM capacity in the 

detailed devices is not matched by a corresponding increase in the number of IOBs.  

Although the architectures are obviously different, SRAM will still need to be 

configured and thus an equivalent amount of data must be downloaded using 

proportionally fewer IOBs.  In addition, larger chips have a larger number of 

components on the chip fabric, therefore the probability increases that a signal will have 

traverse more SBs and CBs on route to an IOB introducing even more delays. 

6.4 Dynamically Reconfigurable Computing 

Dynamically reconfigurable field programmable gate arrays (DRFPGAs) combine, in 

principle, the speed of a dedicated hardware solution with the flexibility of software 

[177]-[179].  Such FPGAs can be reconfigured by an external controller to implement 

any desired set of Boolean operations [180].  This is the concept behind dynamically 

reconfigurable computing: to combine the flexibility of software with the speed of 

hardware [181].  At present there is growing interest in the technology with two 

companies, Triscend [182] and Starbridge Systems [183], both releasing computer 

systems that take advantage of dynamically reconfigurable computing.  Although the 

field is still emergent [184], this section examines the criteria which are used to classify 

a reconfigurable computer system [185]-[186]. 

There are normally two reasons cited for the adoption of dynamic reconfiguration: 
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• Speed improvements through application of a custom architecture to a specific 

problem resulting in increased performance. 

• Fault tolerance which improves the manufacturing process by allowing design 

alterations or problems to be easily overcome. 

The size and complexity of the smallest block in any reconfigurable device is classified 

by its granularity: 

• Fine grained architectures consist of small and simple logic blocks that are 

configured to perform more complex operations. 

• Medium grained architectures consist of complex logic blocks that each perform a 

significant part of any calculation.  Non-standard calculations are enabled through 

reconfiguration of the interconnection network. 

• Coarse grained architectures consist of a number of execution units each with their 

own set of instructions.  Every unit is simpler than a microprocessor but integrated 

tightly enough to give high speed communication [187]-[188]. 

Device integration specifies how closely any reconfigurable system is coupled to its 

host. 

• Dynamic systems are bio-inspired systems which are not controlled by an external 

device.  The idea is that such systems evolve themselves. 

• Static, closely coupled systems bind reconfigurable elements closely as execution 

units on a host processor's datapath. 

• Static, loosely coupled reconfigurable units are situated on a separate board from the 

host.  This is generally detrimental to any speedup as data must be transferred to and 

from any daughterboard. 

The reconfigurability of an external interconnection network between reconfigurable 

units can also be classified into one of two categories: 

• A reconfigurable external network extends the concept of reconfiguration over 

several reconfigurable circuits effectively providing a large reconfigurable unit.  

However, the penalties for going off-chip are high. 

• Fixed external networks use static connections between reconfigurable circuits 

effectively limiting flexibility in order to maximise speed and minimise cost. 
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6.5 Optical Interconnection of FPGAs 

Previous chapters have demonstrated the advantages of optics, but these are general 

advantages and not specific to dynamically reconfigurable systems.  There are two 

compelling reasons why optical interconnects are particularly of interest to DRFPGAs: 

• Bandwidth: FPGAs are routed dynamically and each I/O channel must therefore 

traverse both switching and routing blocks, each with an associated RC delay, to 

reach an I/O block.  This can result in serious bandwidth limitations 

• Reconfiguration: To make dynamically reconfigurable computing at all viable, new 

FPGA configurations must be downloaded at a rate which puts the component out of 

action for the shortest possible time period.  If highly parallel optical I/O was used to 

download new configurations, reconfiguration times could be minimised thus 

making best use of all available processing time. 

The advantages of optical interconnection in such systems lies in locality of data.  Large 

FPGA arrays must always communicate with edge points if conventional techniques are 

used, however optics inserts or extracts data streams at a variety of points normal to the 

surface of the chip.  Since routing occupies between 70%-90% of chip area, optical 

interconnects could ease this problem by freeing up more area for CLBs while 

preserving sufficient interconnectivity to maintain functionality.  Not only does this 

reduce the amount of routing required but it increases the potential bandwidth available 

to the chip as a whole since data need no longer traverse multiple blocks to reach its 

destination.  Indeed, any optical solution would probably enhance rather than replace 

existing electrical I/O.  For instance, as the SRAM capacity of larger FPGAs increases, 

optical I/O could be used to rapidly reconfigure the entire device leaving electrical I/O 

available to implement device functionality. 

The systems proposed here consist of three basic stages.  The first stage we will 

consider as the input stage which is a detector capable of receiving digital optical input 

be it from free space or waveguide.  The second stage is the processing stage and 

consists of a dynamically reconfigurable FPGA system which could be anything from a 

single CLB, as shown in Figure 128: 
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Figure 128: Single CLB Element 
Element with one dynamically reconfigurable CLB or gate array.  Model valid in coarse 
grained architectures. 

To an array of CLBs, as shown in Figure 129: 

Figure 129: Multiple CLB Elements 
Element with multiple dynamically reconfigurable CLBs or gate array.  Model valid in 
fine grained architectures. 

The number of CLBs mapped to optical input and output channels is dependent on 

device granularity.  A single CLB element would normally have its own optical 

communications channels if the architecture was coarse grained, whereas multiple 

CLBs would share optical channels in fine grained configurations. 
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The final stage is the output stage and consists of an optical emitter such as a VCSEL or 

MQW modulator with digital output to either free space or a waveguide.  This 

combination of stages will be referred to as an element. 

To make full use of parallelism, elements are arrayed in two dimensions with one 

detector array, one FPGA and one VCSEL array.  The FPGA processing stage of each 

element is capable of communicating with another electronically, or with any other 

local electronics for that matter, and can be considered as a standard dynamically 

reconfigurable FPGA with an extra optical input and output available to a specific CLB 

or set of CLBs.  Any CLB has the potential to be reprogrammed by its optical input 

stream if configuration information is interlaced using a predefined protocol, or to 

reprogram another CLB in another system by interlacing the same configuration 

information onto its optical output stream. 

It is presumed that any optical information is converted by peripheral interfacing 

hardware into an electronic data stream.  Previous chapters have examined the nuances 

of such hardware.  Interfacing of optical I/O channels can be considered as an additional 

connection to any component on an FPGA.  Connecting the channel directly to a CLB is 

not considered an optimal solution as the full functionality of the CLB will probably not 

be used under such circumstances.  Thus the CLB would become an additional interface 

unless system granularity has been carefully adjusted such that there is no wastage of 

functionality.  However, such optimisation defeats the generality that defines 

reconfigurable computing.  Mapping an optical I/O interface as an additional crosspoint 

on an SB or CB appears to be the most efficient method for implementation.  This 

potentially enables multiple CLBs to connect to a single optical channel using the 

normal routing network, though not simultaneously, giving generalised rather than 

specific access.  However, if optical I/O is used to exclusively download configuration 

information the channel interface point becomes irrelevant with configurations 

downloaded to all configurable components. 

6.6 Sample Applications 

This section presents two examples of systems that benefit from optically 

interconnected FPGAs.  Note that the combination of optical interface integrated with 

an FPGA will be referred to from now on as an optical FPGA (OFPGA). 
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The first example addressed here is the neural network packet switch controller detailed 

in this thesis.  An experimental version has shown a performance commensurate with 

state-of-the-art all electronic switches, albeit using discrete components.  Optically 

interconnected FPGAs would replace the electronic neural network with the optical 

system directly interfacing directly to the FPGA.  Assuming that the FPGA is large and 

fast enough, a switch fabric could be directly integrated onto the device.  This 

application is novel in the first instance in that the packet switch architecture becomes 

adaptable, allowing architectural alteration under high link load or in the event of link 

failure.  In the second instance, programmable weights would allow the network to be 

configured for a wider variety of tasks such as the travelling salesman problem or other 

optimisation problems.  This adds the potential to reconfigure weights in near or at real 

time so that fully adaptive, supervised and unsupervised learning schemes may be 

implemented.  This combination gives us an adaptable and fault tolerant neural network 

with real time adaptive weights and an interconnection density that could never be 

achieved exclusively in electronics. 

A generic multiprocessor harness is another potential application of OFPGAs.  Their 

role in such a system would be to optimise communications and processing in real time 

during the execution of a range of algorithms.  Note that this section extends the optical 

highway architecture described in section 3.7, examining a node in further detail.  The 

bandwidth of communications in this system is sufficiently high to implement a flat 

memory model, but superior performance on particular algorithms may be obtained by 

changing topology in the interconnect harness.  In essence, the destination of any data 

channel output into the optical domain is determined by the spatial location of the 

emitter output on the OFPGA.  Thus by re-routing signals within the OFPGAs, a 

particular global topology may be established. The machine could of course be 

configured arbitrarily into several differently connected regions presuming this was 

desirable. In addition, the functionality of the interface may be changed.  OFPGAs 

allow us to configure the interface as a router, necessary if we wished to utilise a 

hypercube in the optical domain, or as a switch of high throughput, necessary if we 

wished to use a large crossbar in the optical domain.  For nodes of sufficient 

complexity, the maximum throughput of the system may often be attained by changing 

the width of data words as well as the topology so as to keep all communication 

channels busy.  OFPGAs could support variable width multiplexing as well as routing at 

the interfaces. 
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Figure 130: Processing Element or Node 
The processing element can be considered as a node in an optical highway.  Multiple 
nodes create a massively parallel machine where the OFPGA dynamically controls 
topology.  Connection of a number of OFPGAs in this manner can be considered as 
creating a large virtual FPGA. 

In a generic interconnect, the combination of FPGAs with high bandwidth 

optoelectronics enables an intelligent communications interface to be constructed and 

allows maximisation of the ultra high throughput available.  In turn, this facilitates real 

time optimisation and load balancing of the entire machine over a range of 

computational models. 

An important issue in parallel systems is that of memory organisation with regard to 

both physical location and address space.  The physical location is exactly where the 

memory is placed.  This can be either distributed in chunks next to each processor thus 

giving fast access times for that processor to its memory or centralised in a particular 

location resulting in similar access times for all processors.  Centralising memory has 

the advantage that if not all processors are being used the entire memory space is still 

available to other processors with no inter-processor communication required.  

However, this reduces overall memory access times due to complicated memory access 

schemes and the fact that memory can be considered as remote to all processors.  The 

next consideration is address space which is directly tied to the issue of 

communications.  There are two types of address space.  Shared address space which 

implies implicit communication and multiple private address space which implies 
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explicit communication.  Shared address space systems perform well when 

communications are fine grain [189] since large blocks of data must be separated into a 

number of smaller transactions.  However,  multiple private address space systems are 

better suited to coarse grain communications as the message overheads need only occur 

once regardless of the amount of data transferred. 

6.7 Conclusion 

Dynamic reconfiguration is becoming ever more popular as a means of high speed and 

flexible processing.  As an increasing number of companies begin to release such 

systems, the issues of bandwidth will continue to become more prominent.  The author 

believes that the only way to overcome the associated bandwidth limitations is to utilise 

optical interconnection, be it through free-space or waveguides.  Optical interconnects 

are not intended as a replacement for existing electrical interconnect but rather as an 

enhancement.  However, without optical interconnection, dynamically reconfigurable 

computing will hit a premature performance ceiling. 
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7 Conclusion 

"Accuracy is impossible for all but the most trivial question, but blurred vision is 

better than none at all." 

Ian Pearson, BT Technology Futurologist [190] 

Classical computer systems appear to embody obsolete assumptions.  Is there any 

particular reason why processor and memory must remain physically separate?  Such 

architectures are referred to as von Neumann where the processor is differentiated from 

memory.  The bottleneck between both components is becoming ever more pronounced 

as technology pushes physical limits.  Caching schemes attempt to alleviate the problem 

by adding to the processor a small amount of memory which runs at the same speed.  

This is essentially an interim solution to a growing problem.  Optical technologies are 

ripe to replace existing electronic interconnection schemes.  Perhaps chip densities will 

soon no longer be relevant since chip-to-chip optical interconnection has already been 

shown to have a lower latency than long lines across a large substrate. 

The connectionist approach seen in neural networks has been proposed as an evolution 

in computer architecture to the massively parallel domain.  This thesis has clearly 

demonstrated its advantages.  Nevertheless, any electronic implementation is still 

limited by today's technology due to poor interconnection density, a limit that is 

surmountable if optical interconnection schemes are used. 

The author does not see short or medium term adoption of completely optical 

computing systems where switching is performed in the optical domain.  This is mainly 

due to two reasons.  Firstly, there is simply not any interaction between photons.  All 

interaction must take place through a medium which responds to photons in a light-

guiding-light manner.  However the switching energies are such that the question is 

raised, why not convert the photons to electrons and utilise existing and proven 

technologies for switching.  This leads on to the second point which is based on 

commercialisation as investors want to see a return on their investment.  Most large 

companies like to enhance what they have rather than dispose of decades of research 

and development, in this case the maturing technology of semiconductors, and replace it 

with something new and unproven.  Therefore they will not rapidly replace 

semiconductors with completely optical technologies.  What is likely to happen is that 
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they will integrate optoelectronics to provide high bandwidth interconnects between 

their existing semiconductor integrated circuits.  It will not be long before PCBs use 

waveguides rather than metal tracks. 

There are various alternative experimental computational architectures on the horizon 

such as molecular computing, DNA computing and quantum computing [191]-[193].  

However, none of these architectures address data locality but they simply provide a 

faster and sometimes novel way of manipulating data.  Indeed, architectures such as 

quantum computers do not even provide general purpose computing.  As there is no 

challenger with the performance of optical interconnects such future systems will 

undoubtedly have to use optics just to be able to transfer data at a comparable rate. 

Optoelectronics are sneaking in by the back door.  They have already superseded 

electronic interconnection over long distance and are continuing to replace electronics 

over shorter and shorter distances.  It will not be long before electronic chips are 

directly interfaced to optical systems, closely followed by across chip optical 

interconnection.  Finally, there will only be electronic switching elements between 

optical transmission lines.  The next question then is why do we need that electronic 

switch at all. 
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8 Glossary 

AC Alternating current. 

ADC Analogue-to-digital converter. 

ANN Artificial neural network. 

AO Adaptive optics. 

APD Avalanche photodiode. 

AR Anti-reflective. 

ASIC Application specific integrated circuit. 

ATM Asynchronous transfer mode. 

BT British Telecom. 

CAD Computer aided design. 

CB Connection block. 

CCD Charge coupled device. 

CCITT Comité consultatif international téléphonique et télégraphique. 

CD Compact disk. 

CLB Configurable logic block. 

CMOS Complementary metal-oxide semiconductor. 

CPLD Complex programmable logic devices. 

CPS Connections per second. 

CPU Central processing unit. 

CSEM Centre Suisse d’electronique et de microtechnique. 

CW Continuous wave. 

DAC Digital-to-analogue converter. 

DBR Distributed Bragg reflector. 

DC Direct current. 

DH Double heterojunction. 
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DNA Deoxyribonucleic acid. 

DOE Diffractive optic element. 

DRAM Dynamic random access memory. 

DRFPGA Dynamically reconfigurable field programmable gate array. 

DSK Digital starter kit. 

DSP Digital signal processor. 

Ed(s). Editor(s). 

EEPROM Electrically erasable programmable read-only memory. 

EPAC Electrically programmable analogue circuit. 

EPROM Erasable programmable read-only memory. 

FF Feed forward. 

FIFO First in first out. 

FIR Far infrared. 

FKE Franz-Keldysh effect. 

FP Floating point. 

FPGA Field programmable gate array. 

GAL Generic array logic. 

HOL Head of line. 

HWP Half wave plate. 

I/O Input/output. 

IOB Input/output block. 

ISP In-system programmable. 

ITU International telecommunication union. 

LAN Local area network. 

LASER Light amplification by stimulated emission of radiation. 

LCD Liquid crystal display. 

LD Laser diode. 
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LED Light emitting diode. 

LSB Least significant bit. 

LUT Look-up table. 

MEL-ARI Microelectronics advanced research initiative. 

MIMD Multiple instruction streams, multiple data streams. 

MIN Multistage interconnection network. 

MIR Mid infrared. 

MISD Multiple instruction streams, single data stream. 

ML Maximum likelihood. 

MLP Multi-layer perceptron. 

MMIO Memory mapped input/output. 

MPGA Mask programmable gate array. 

MQW Multiple quantum well. 

MSB Most significant bit. 

MTBF Mean time between failure. 

NEP Noise equivalent power. 

NIR Near infrared. 

NN Neural network. 

NOP No operation. 

NOR Not or. 

OFPGA Optical field programmable gate arrays. 

PAL Programmable array logic. 

PBS Polarising beam splitter. 

PC Personal computer. 

PCB Printed circuit board. 

PCI Peripheral component interconnect. 

PD Photodiode. 
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PE Processing element. 

PLA Programmable logic array. 

PLD Programmable logic device. 

PROM Programmable read-only memory. 

PS Packet switch. 

PSTN Public switched telephone network. 

QCSE Quantum confined Stark effect. 

QoS Quality of service. 

RAM Random access memory. 

RH Relative humidity. 

SB Switch block. 

SCIOS Scottish collaborative initiative on optoelectronic sciences. 

SIA Semiconductor industry association. 

SIMD Single instruction stream, multiple data streams. 

SISD Single instruction stream, single data stream. 

SLM Spatial light modulator. 

SNR Signal-to-noise ratio. 

SPA Smart pixel array. 

SRAM Static random access memory. 

TEC Thermoelectric cooler. 

TN Twisted nematic. 

TSP Travelling salesman problem. 

TTL Transistor-transistor logic. 

UV Ultraviolet. 

VCI Virtual channel identifier. 

VCS Virtual circuit switching. 

VCSEL Vertical cavity surface emitting laser. 
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VLSI Very large scale integration. 

WDM Wavelength division multiplexing. 

WTA Winner take all. 

XOR Exclusive or. 

ZIF Zero insertion force. 
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