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Quantum Computing

1 Abstract

A computer with memory that is exponentially larger than its size may sound
ridiculous but it is in fact almost a reality. This report introduces the reader to
the theory of quantum computing and proceeds to outline four implementation
theories: quantum dots, ion traps, quantum optical and nuclear magnetic
resonance (NMR). But which quantum technology is the most promising for
the future?
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3 Introduction

3.1 The Information Revolution

The size of computers is constantly being reduced as lithographic processes
proceed to miniaturise the transistor even further. However this trend cannot
continue indefinitely because of the atomistic nature of matter; a problem
recognised by Landauer ([44], [42]) in 1960. His studies suggested that a
minimal limit of one hundred particles is required to represent information
reliably.

Since this time, semiconductor technology has drastically improved with the
size of transistors continually shrinking. As the size of a transistor is directly
related to the number of particles required to store information we can gauge
from this how long it will be before

we start reaching the quantum 107 .

regime. By examining the number
of dopant impurities required to
create a bipolar transistor, Keyes
[39] illustrated, as shown in figure
1, that based on the past rate of
development we should be
reaching this limit within the next
10 years.
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classical systems from functioning ]
correctly - a major problem as far Figure 1

Decreasing number of dopant impurities in base of bipolar transistors for logic.

as the electronics industry is
concerned. The only way forward
then is to start making use of these effects: to represent information on the
quantum scale [21].

But with size reduced to quantum levels, a new advantage becomes apparent:
exponential parallelism, as theoretically proposed by Deutsch [41]. It is not,
however, an incredible solution for system speed increases, simply a physical
property of the system exploited in such a way that the quantum laws of
superposition are taken full advantage of. Previously unsolvable problems,
because of their complexity in a classical system, suddenly become solvable
with quantum computation. A good example was given by Shor [29] who
proposed an algorithm for the factorisation of numbers using quantum
techniques (explained in more depth in [17] and section 4.2.2).

To actually make full use of this property, new ways of algorithmic
programming must be considered. Therefore any 'Quantum Revolution' [7]
may affect the software industry more than any other industry.
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However, we have not yet managed to successfully build a quantum computer
solution yet: we are currently only capable of the most rudimentary of
implementations. A fully successful implementation of any quantum computer
would be a twofold victory for modern technology because not only would it
verify all our current quantum theory but it would also put a powerful new
computational tool at our fingertips.

3.2 Objectives

This Literature Search will briefly examine the concept of quantum
computation and then proceed to consider possible implementations. The
advantages and disadvantages of each of four currently theorised
implementations will be assessed and finally one recommended based on
current theory.

This is a Literature search. It is not meant as a complete explanation of the
field, but simply as an introduction to it with a large amount of references from
which the reader can follow up any ideas or areas of interest.

This search was designed to try and cover the latest research and has
actually focussed itself on papers published between 1995 and 1997: apart
from the few obvious exceptions which are considered to be the papers that
founded this field ([41] and [29]).

3.3 Report Outline

This report is divided into five major sections:

¢ Introduction: This section is designed to give an idea of why quantum
computing is a desirable or perhaps even necessary evolution in
computing.

e Quantum Theory: Examines a few of the basic concepts required to
understand how quantum computing is supposed to work.

¢ Implementations: This section proceeds to look in detail at proposed
implementations for quantum computer systems.

e Conclusion: Summarises the Literature Search and weighs up the
advantages and disadvantages of each implementation.

e Bibliography: Contains a full listing of all the references used throughout
the report in reverse chronological order of publication. Since this is a
Literature Search a copy of the abstracts is provided in small type next to
each reference. This allows the reader to get a better idea of what the
paper is about without having to retrieve it first.
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4 Quantum Theory

"This quantum business is so incredibly difficult and
important that everyone should busy himself with it."

Einstein in a letter to his friend Laub, 1908

4.1 The Concept of Superposition

What makes quantum computing so different from classical computing? Let's
take it back to the idea of bits 1 and 0.

In current computing systems this
bit of information is represented
by the voltage difference between
two electrical plates: 1 if a charge
is present, 0 otherwise.

. Electron
Nux:leus/v \
-
~

State 0

Ground state

To represent information in a
quantum system we would
choose, for example, an atom to
represent our bit of information,
as shown in figure 2. Here we
could use the ground state to
represent a 0, the excited state to
represent a 1. This form of bit will
be referred to from now on as a
"quantum bit" or qubit.

“Excited state

State 1

Coherent
superposition

However, quantum theory also of 0 and 1

states that in addition to the two
distinct electronic states, an atom
can also be in a coherent Figure 2
superposition of these two states  piomeengused o store s bt ointormatn. Accordng o uentum mectance

|e both O and 1 at the same both states 0 and 1.
timel!

To help explain the abstract concept of coherent superposition, consider the
experiment shown in figure 3 overleaf. A photon enters the system and hits
the half silvered mirror at point A. This mirror has a 50% chance that any light
hitting it is reflected and indeed if we measure this probability the distribution
is 0.5 for each beam. However this does not mean that the photon simply
travels in either reflected or transmitted beams: the photon does in fact travel
both paths at once. This can be demonstrated by re-combining the beams at
point B, at which a very interesting phenomenon of quantum interference can
be observed.

As shown in the diagram, we would expect that there is an equal probability of
the photon appearing at either detector 1 or 2. Again, this is not the case: if
the path lengths are equal the photon always appears at detector 1!
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It seems that the photon must have examined both routes in some sense
because if an absorbing screen is placed at point C there is an equal chance
that either detector 1 or 2 is hit - the photon does not consider travelling down
the path which is blocked by the absorber. We can therefore say that the
photon took both the transmitted and reflected paths i.e. is in a coherent
superposition of being in both transmitted and reflected paths.

Detectpr 1
Photon f J
entry
\\

[

,/B

A

Half silvered mirror Mirror Detector 2

Figure 3

Diagram of beam-splitter experiment: Note that all possible paths are shown in this diagram.

It is therefore possible for a qubit to have a third state where it is both 0 and 1
at the same time. Reference [37] deals with this concept in some detail and is
recommended reading.

411 The Qubit

To represent a binary value we need to consider an elementary spin-’%
particle (such as an electron or proton) which will have a spin down state
written [{) and a spin up state written [1). These can be considered to be
binary 0y and [1) respectively. We can therefore write its wave function down
as being:

W= a|0> + ﬂ|1> Equation 1

where the squares of alpha and beta represent the probability that the
corresponding particle is in that state.

To enhance the distinguishability of these probabilities, Hilbert space is
normally used. If, however, we use a set of k spin-% particles (k=3 in the
example in equation 2):

|5)=|101) = ‘T¢T> Equation 2

It becomes apparent that the dimensionality of this Hilbert space is growing
proportionally to 2% - and therefore also the number of values that may be
represented by coherent superposition.
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4.1.2 Reversibility

A problem in computing with miniaturisation is dissipation of heat. This
problem was realised by Landauer [43] in 1961. To combat this problem,
computation needs to be performed in such a way that the input can be
retrieved from the output: i.e. the system is logically reversible. If we have a
logically reversible system we should be in a position to create a gate that is
also physically reversible. The second law of thermodynamics then states
that if an operation is physically reversible it will dissipate no heat - almost a
necessity when we are working at the quantum level.

4.1.3 Decoherence

Theoretically, quantum computing should work without many problems.
However, there are still a few practical problems to be overcome before a
solution can be implemented and one of these is decoherence [21] [45] [46].
There have already though been a few solutions to this problem proposed [5].

Quantum systems need to be perfectly isolated from their environment. If
they are not then the quantum dynamics of the surrounding environment could
influence a calculation's evolution in the system. Since the computation
pathways are separated at the beginning and only re-combined at the end,
any interference will spoil the constructive and destructive effects essential in
quantum computing. It is therefore necessary that any decoherence time
(seconds) needs to be far longer than the time required to complete
computation, given switching time tsuitch (sS€conds). Unruh [18] examines this
problem and concludes that most present day qubits are inadequately phase
coherent to perform factorisation of a 10* bit number using Shor's algorithm.
Qubit technology is, however, continually improving.

Quantum System tswitch (S) t, (s) Ratio
Méssbauer nucleus 10 10 10°
Electrons: GaAs 10 10710 10°
Electrons: Au 10™ 10° 10°
Trapped ions: In 10 10” 10"
Optical microcavity 10" 10° 10°
Electron spin 10”7 107 10*
Electron quantum dot 10° 10 10°
Nuclear spin 107 10* 107

Figure 4

Important times for various two-level systems in quantum mechanics that might be used as quantum bits.

Figure 4 shows values that are unfortunately not the newest: they date from
1995.
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4.2 The Advantage of Quantum Computing

Quantum computers are the same as classical computers except in one major
sense: to do the same as a quantum computer, a classical computer needs
exponentially more time and resources. For example, if we have a quantum
register of size k, it can be seen to represent 2% numbers simultaneously.
Unfortunately, if we were to measure what value this quantum register held
when it was in a superposition, we cause the wave function in equation 1 to
collapse and suddenly we have a specific value. This problem is known as
observer participation [37]. However if we do not observe this register directly
we can use it to solve previously unsolvable problems...

4.2.1 Prime Factorisation of Numbers

The RSA public key cryptosystem relies on the fact that large numbers are
difficult to factorise. In fact the best known algorithm on a classical computer
for prime factorisation of a number N requires the number of steps shown in
equation 3:

[‘;“j%(lnzv)%(lnlnzv)%} Equation 3
exp
the algorithm scaling exponentially with respect to log N.

On the other hand, the quantum implementation in Shor's [29] requires the
number of steps shown in equation 4:

(logN)** Equation 4

where ¢ is a very small number.

To illustrate the difference, let us consider a recent attempt at factoring a 129
digit number. 1,600 workstations throughout the world required 8 months to
factor this number. Scaling this up to a 1,000 bit number, it would take
classical computing methods 10% years to factor such a number. On the
other hand, a quantum computer using Shor's algorithm would require only a
few million steps to factor a 1,000 bit number.

4.2.2 Shor's Algorithm

Classical computation follows a single, definite, pathway from beginning to
end. However, quantum computation can follow several pathways which
evolve in time in parallel because of the principle of superposition.

Consider figure 5. Each plane in this diagram represents the Hilbert space for
both input and output registers where k=1000 bits. The shaded areas indicate
the instantaneous state vectors throughout the 3 main phases of Shor's
algorithm.

10
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Start: The starting state is first set
so that all the particles are spin " T
down i.e. equal to zero. The
number N to be factored is not yet
needed.

Stage 1: The computation is now
split up into 2'°%° pathways. Which
turns the wave function into a
superposition of all possible states
of input register x.

Stage 2: First the function in
equation 5 should be evaluated
with the result being put in the
output register y.

Figure 5

A schematic depiction of the time evolution pathways taken in Shor's prime
factoring procedure. The top layer is the start time and the bottom layer 3
the end time. A filled rectangle indicates a computational state appearing in
the wave function with a few of the pathways between sketched out. Most

f(x) = Cx (mod N) Equation 5 pathways in the final stage interfere destructively (dotted line) however some

interfere constructivelv (solid lines). Taken from [211.

Here x is the value being considered as a factor, N is the value to be factored
and c is any integer that does not have any factors in common with N. We
use mod here to represent modular arithmetic where the result is the
remainder after division by N. Because of the superposition principle,
evaluating equation 5 obtains every value of the output presuming that the
input is a superposition of all possible values. The Importance of f(x) is its
periodicity in relation to x. If N is a prime number then the period of f(x) is N-1.
However, if N is composite f(x) has a shorter period and after a little classical
computation we can extract one of the prime factors from this period.

More information on what f(x) is useful for the factorisation of prime numbers
is give in [29] (original) and [17] (recent review).

Stage 3: Quantum computers are also very well suited to finding the
periodicity of f(x). This can be done by taking a DFT (Discrete Fourier
Transform) of the input register x. The wave function in equation 6

11...1
v, = Zcx x) Equation 6
x=00...0
is therefore evolved into that in equation 7 after the DFT.
11...1 L MLt 2/
w,= > (2 e Z“cx,j|x> Equation 7
© o x=00..0 x'=00...0

This proves to be a very efficient method of obtaining the periodicity of f(x)
which is then available in the x register. This measure is unfortunately an
unknown multiple of the fundamental period of f(x); however there are some
straight forward number-theory-considerations that can be used to reliably find
the fundamental period.

4.2.3 A Final Word on Shor's Algorithm

The above description does not do this complicated algorithm any justice. For
further information please refer to [17].

11
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4.2.4 Error Correction in Shor's

Error detection and correction is actually not much of a problem in Shor's
algorithm. This is because simple multiplication of the factors should give the
number back which was being factored in the first place. This allows
detection of the error, and correction ensues by simply running the algorithm
again.

4.3 Gate Types

We now have a definition for quantum registers and a useful algorithm, but
how is it possible perform a logical operation on something which essentially
cannot be observed? Without these operations it is not possible to actually
manipulate any data in the fashion we desire. There are fortunately various
implementations all with a common trait: they are all reversible (see section
4.1.2).

4.3.1 The Controlled-Not Gate

This gate is the building block of most quantum computer solutions and is
commonly known as the CN or CNOT gate. Considering it elementarily, if we
have two qubits |A) and |B) we have:

If (1A = 1) then [B) = (NOT |B))

This gate system is also analogous to a XOR gate. Figure 6 shows a diagram
of the gate with its associated truth table.

IAYin | |B)in | |A) out (|A)) | |B) out (|A®B))
0 0 0 0 < >
0 1 0 1 IB) D lAe B)
1 0 1 1
Figure 6
1 1 1 0 CNOT gate diagram and logic.

To give an example of how useful this gate can be please examine figure 7.
This figure shows a sample implementation, which is reversible, that swaps
both input bits.

=%

fany
A%
a

D Iy Figure 7

Sample application for CN gate which reverses the inputs.

4.3.2 CN Implementation
But how can we actually perform a logical NOT on the quantum level?
Relating back to our atomic model in 4.1, to reverse the current state at either

of the energy levels we need to shine a pulse of the appropriate light intensity,
duration and wavelength onto the atom. If the wavelength matches the

12
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energy difference level between both ground and excited states then the
electron will change energy level: If it is in the ground state it will jump to the
excited state and vice versa.

This implementation has actually been performed on atoms of rubidium (ENS
experiments) and beryllium (NIST experiments)

4.3.3 The Toffoli Gate

The major problem in quantum computing is reversibility. This problem was
overcome by Toffoli when he created a gate with the ability to perform all the
logic functions that a computer may require. It also has the major advantage
that a second application of itself will retrieve the original input. Figure 8
shows a block diagram and brief explanation of each of the functions.

AC  for B=0 AND W |A>
A®B for C=1 XOR
B®(4C) " —
B for A=C=1 NOT
A4 for B=0, C=1 FaNouT |© >
Figure 8

Toffoli gate and the logic operations it can perform.

A maijor problem though is that we get a lot of junk bits from the Toffoli gate.
At this point we need to consider creating an erase gate to remove some of
the inconsequential information. To erase information about a particle's state
we must irreversibly compress phase space by a factor of 2. Landauer
concluded [43] that to erase a bit of information at temperature T requires the
dissipation of at least the amount of heat shown in equation 8

ky,TIn2 Equation 8

Landauer's principle

where kg is Boltzmann's constant.

4.3.4 The Fredkin Gate

The Fredkin gate will not be examined in depth here, but for the sake of
completeness its truth table is as shown overleaf in figure 9.

13
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Input Output
Ci a b; Co bo o
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1
Figure 9

For more information on the Fredkin gate see paper [36].

14
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5 Implementations

This section examines current implementations of quantum systems paying
particular attention to quantum dot and trapped ion systems.

There are still a lot of problems in this field since obtaining the correct
conditions for a working quantum computing system is extremely demanding.
Firstly, precise control of Hamiltonian operators on a well defined quantum
system is not that simple and secondly we still have the major problem of
decoherence (see section 4.1.3).

There are 5 important rules laid down [8] which can be used to define a
quantum computer's operation:

1) Well defined qubits should be identified.

2) Reliable state preparation should be possible.

3) The system should have low decoherence.

4) Accurate quantum gate operations must be possible.
5) There must be strong quantum measurements.

These points need to be adhered to if a satisfactory quantum computer is to
be designed.

5.1 Quantum Dot Systems

Quantum dots have one big advantage over other quantum computing
methods: ease of implementation. Unlike all other systems mentioned here,

N
N
Ty

o
4
Ny
-
LR

D)
Neart NTTy
e N »
: RS 2
CRACICICIO,

Ny
Ne
/k\

Figure 10

Sample quantum dot implementation. Please refer to text for details. Taken from [8].
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the quantum dot does not actually work with quantum sized particles. Instead
it is a magnetic nano-system within which the non-equilibrium spin dynamics
can be controlled. The sheer fact that it is a nano-system puts us in a position
to fabricate it far easier than any of the other choices.

The model qubit in a quantum dot system is realised as the spin of the excess
electron on a single electron quantum dot. Interaction between qubits is
performed using controlled gating of the tunnelling barrier between
neighbouring quantum electron dots. When the dots are set to interact, the
spins in a quantum dot system become subject to a transient Hysenberg
coupling. Please examine figure 10 carefully.

Section (a) in figure 10 shows two quantum dots labelled 1 and 2 each with
one excess electron e with spin-Y2. The tunnel barrier can be raised or
lowered by setting a gate voltage high (solid equipotential contour) or low
(dashed equipotential contour). If the tunnel barrier is lowered then virtual
tunnelling will produce a Heisenberg exchange J(t) with respect to time. One
method of performing single qubit operations is by hopping to an auxiliary
ferromagnetic dot FM. Another method is tunnelling (T) to a paramagnetic
(PM) dot which may be used as a positive operator valued (POV) [34] readout
with 75% reliability. The final method is spin dependent tunnelling through
'spin valve' SV into dot 3 which allows spin measurement via an electrometer.

Section (b) in figure 10 describes a proposed experimental setup for initial test
of swap-gate operation in an array of non-interacting quantum dot pairs. The
left column here is unpolarised while the right one is polarised.

(— Gate —T+—~——: )

= Control
|

Figure 11

(a) shows a picture of the fabricated array while (b) shows a schematic layout of the array, control device and ohmic contacts. Taken from [27].

16
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State preparation is possible by cooling the system sufficiently in a uniform
magnetic field: acceptable spin polarisation will eventually be reached at
cryogenic temperatures. An example of this is shown in (b) in figure 10.

A normal quantum dot system can be made using today's lithographic
techniques [27]. Figure 11 shows an electron micrograph of such a system
made from standard modulation doped GaAl/Aly31Gag gsAs.

One method of non-invasive measurement of the quantum dot is called
ballistic point contact measurement [3], however decoherence from point
contact was recently observed by Buks [2]. For further discussion on
coherence in quantum dots please refer to [26].

Of all the implementations of quantum computers, quantum dots seem to be
one of the fastest growing. Whether or not it will become the first working
implementation of quantum computing remains to be seen.

5.2 Trapped lon Systems

Trapped lon systems [22] are realised by trapping a single ion in a chosen
quantum state of the centre-of-mass vibrational motion (for a complete
analytical description of the motion of a trapped ion in either an even or odd
state, please refer to [10]). The two states of the n-th qubit are characterised
by the two internal states of the corresponding ion. If we consider the ground
state to have an approximate value of 0 and the excited state a value of 1 we
can define a state of the quantum computer to be a macroscopic
superposition, as shown in equation 9, of quantum registers |X) = IXn-1n-1...1X00

x)= Qe
x={o.1}"

2V

Iw=;%

£> Equation 9

N-1
x=Yx2" Equation 10
where x equals equation 10, the binary decomposition of x.

It is possible to trap a set of N cold ions in a linear trap [30] [35] and use laser
light as a means of interaction - as shown in figure 12. This system is
characterised by:

e |t allows the implementation
of n-bit quantum gates @ Q Q Q
between any set of (not J, K
necessarily  neighbouring) AR A A SR N A
ions.

e Decoherence can be made ® ] 'ﬁ‘_’>
negligible during the whole h ')! )
_ Ig>

computation.

e The final readout can be
performed with unit efficiency. Figure 12

(a) N ions in a linear trap interacting with N different laser beams; (b) atomic level
scheme. Taken from reference [22].

17
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Individual manipulation of a qubit can be easily performed by directing
different laser beams onto each of the ions.

However, decoherence in the

system is still a problem and is 10

caused by spontaneous decay of 2 call /=~

the internal atomic states and %’ i /4

damping of the motion of the ion 8 /]
g 6 Hgn ,;* — /7

[15].  Another more obscure < 7 .

source is decoherence due to é 4 4

intensity and phase fluctuations 5 , P gy Bl

in the exciting laser pulses [4]. 8 P it

Both of these limit the size of P = —

computation ion trap systems B et e hiaads) -

can perform: for example, figure

13 shows the size of number that Figure 13

can be faCtorlsed dependant on The var_iation of_ the number of l_)its 1 in the largest integer_ that may be factored
hOW qU|Ck|y an ion type becomes g;‘?segiglnn.gF?gnur:aogkteyr??r'om'}q%?mum values are determined by spontaneous
decoherent.

The problem of spontaneous emissions can fortunately be suppressed by the
use of metastable transitions as described in [28]. In addition, given
sufficiently low pressures, the chance of collisions with background atoms,
and their couplings that affect the moving charges, can be reduced to give
stability for very long times [31].

Finally, the readout of the quantum register at the end of a calculation can be
accomplished using the quantum jumps technique [16] [40] with unit
efficiency.

Linear ion traps are well suited to implement a quantum computer, however,
scaling them up to do large scale quantum computing is a problem. The
reason they are so suited is because of negligible decoherence in the system
[31] and unit efficient readout techniques.

How a Quantum-Logic Gate Works

Optical access holes

Compensation

electrodes
[four each)

for laser beams
Positioners fintenna
/_[fnur each] :
T S 5 T s}
e 3

Chamber

electrode

Ring
electrode

Compensation
electrodes

Figure 14

Possible desian for an lon trap quantum computing system. Internet source unknown.
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5.3 Quantum Optical

Quantum Optical systems make use of the superposition of single photons to
perform optical computations. The major advantage of using optical
frequencies is that they are essentially isolated from thermal noise and thus
ideal for analysing the ultimate quantum limits to reversible quantum
computation.

However this very advantage is also its drawback: There is no such thing as
a lossless symmetric beam splitter, polarising media or Kerr media. This
means that regardless of what happens there is always a chance that a
photon in the middle of a computation will be lost with disastrous effects.
Without error detection or correction there is no way of knowing whether the
computation was correctly performed or not.

An important development in quantum optics was the development of the
quantum optical Fredkin gate (see section 4.3.4 for more information) by
Milburn [36] in 1989. As time progressed, so did the theory and in 1996,
Chuang and Yamamoto [14] proposed a full implementation for a simple
quantum computer - with only one problem: we still do not have the
technology to implement it. Since this point, technology has not progressed
particularly far, but the requirements from it have changed.

In June of 1997, Cerf, Adami and Kwiat [9] published a paper that outlined a
system which they believe can be implemented using present technology.
One major advantage in their system was that it uses purely linear optical
components: in other words avoiding recourse to non-linear Kerr media. It
does unfortunately also have its disadvantages: the system has an
exponential need for resources as it is scaled up. They therefore
recommended that the system is only useful for creating small scale quantum
circuits.

Quantum optic computing was one of the foundations of quantum computing
but it is also probably the most problematic to implement. We should not
however write it off as photonic systems are one of the most resilient to noise.

5.4 NMR Quantum Computing

NMR (Nuclear Magnetic Resonance) systems [6] (when working in a liquid
state) perform computation on a large number of identical quantum systems.
Each quantum system consists of the interacting nuclear spins of a molecule
in a high magnetic field. There are three stages to NMR computation:

e Preparation: Performed by allowing the system to relax to thermal
equilibrium.

e Computation: The nuclear spins within the system are manipulated by
applying radio frequency (RF) pulses tuned to the Larmor frequencies.
Spins can be selectively excited by exploiting differences in these
frequencies.

e Readout: Performed by observing the signal induced in RF coils by the
precession of the nuclear spins.

19
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Figure 15 showns an example of a trichloroethylene molecule representing a
3 qubit system.

The main problem with NMR is using it for the
observation of multi-particle entanglements and
quantum computation is that the sample is
initially in a highly mixed state. This can
fortunately be overcome without cooling by
transforming the initial mixed state so that we
have a psuedo-pure state.

Room temperature NMR proves to be useful for
computations involving small numbers of .
qubits. There is one interesting point though: Figure 15

Trichloroethylene molecule being used for NMR: 3

NMR |S the Only teChnOlOgy Whel‘e we can qubits are Hydrogen and both Chlorine molecules.
. . Diagram taken from [6].
systematically entangle more than two qubits. remt “

5.5 Further Reading

There are a number of papers which relate to the quantum computing field but
did not fit nicely under any of the headings in the report. These papers are
detailed in the references section and have the following numbers: [1], [11],
[13], [23] and [25].
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6 Conclusion

The main problem for any practical realisation is the existence of decoherence
processes due to the interaction of the system with the environment. These
problems are beginning to dwindle as are not only better technologies
becoming available, but so are better theoretical versions of a quantum
computer.

From the information available, it seems that in the short term quantum dots
seem to be the most promising technology for quantum computers. They are
nano-scale systems which makes them easier to build than quantum systems,
but yet they represent a quantum system. Scalability to large quantum dot
systems is also not so much of a problem when compared to scaling up a
quantum optical or trapped ion system. This is not to say that the other two
don't have their advantages. In the long term it seems that trapped ion
quantum computers will become more and more interesting due to the long
time it takes for them to become decoherent.

When a working quantum computer is created it will be a great breakthrough
and | believe that this day is not far off. Quantum computing is still in its
infancy, but its growing up very fast.

6.1 Future Work

This examination was very much high level: the hard-core maths being left to
the referenced papers.

An interesting extension to this report would be the consideration of method of
implementation for a quantum dot system as this area of research seems very
promising.
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